Prove the equation has no real solution

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary

Discussion Overview

The discussion centers around the polynomial equation $x^8-x^7+x^2-x+15=0$ and whether it has any real solutions. Participants explore various approaches to prove the absence of real roots, engaging in mathematical reasoning and analysis of the function.

Discussion Character

  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant proposes that the function $f(x) = x^8-x^7+x^2-x$ is positive for $x<0$ and $x>1$, and provides reasoning for the interval $0 \leqslant x \leqslant 1$, concluding that $f(x) + 15 \geqslant 13 > 0$, thus asserting no real roots exist.
  • Another participant reiterates the same reasoning and conclusions regarding the positivity of $f(x)$ across the specified intervals.
  • Some participants express gratitude for contributions and acknowledge the correctness of the approaches presented, but do not introduce new arguments or counterpoints.
  • Several posts appear to be greetings or acknowledgments rather than substantive contributions to the mathematical discussion.

Areas of Agreement / Disagreement

While some participants agree on the reasoning provided regarding the positivity of the function, the overall discussion does not reach a consensus on the proof, as there are repeated requests for a proof without resolution of the initial claim.

Contextual Notes

There are repeated assertions of the same reasoning without additional mathematical rigor or exploration of alternative methods, leaving some assumptions and steps in the argument unaddressed.

Who May Find This Useful

Participants interested in polynomial equations, root-finding methods, and mathematical proofs may find this discussion relevant.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that the polynomial equation $x^8-x^7+x^2-x+15=0$ has no real solution.
 
Mathematics news on Phys.org
[sp]Let $f(x) = x^8-x^7+x^2-x = (x-1)(x^7 + x)$. If $x<0$ then both factors are negative and so $f(x)>0$. If $x>1$ then both factors are positive and so $f(x)>0$ again. If $0\leqslant x \leqslant 1$ then $|x-1|\leqslant 1$ and $|x^7+x|\leqslant 2$ and so $f(x) \geqslant -2$. Thus $f(x) \geqslant -2$ for all real $x$ and so $f(x) + 15 \geqslant 13 >0$. Hence $f(x) + 15 = 0$ has no real roots.[/sp]
 
Opalg said:
[sp]Let $f(x) = x^8-x^7+x^2-x = (x-1)(x^7 + x)$. If $x<0$ then both factors are negative and so $f(x)>0$. If $x>1$ then both factors are positive and so $f(x)>0$ again. If $0\leqslant x \leqslant 1$ then $|x-1|\leqslant 1$ and $|x^7+x|\leqslant 2$ and so $f(x) \geqslant -2$. Thus $f(x) \geqslant -2$ for all real $x$ and so $f(x) + 15 \geqslant 13 >0$. Hence $f(x) + 15 = 0$ has no real roots.[/sp]

Thanks for participating, Opalg and welcome back to the forum! You have not been posting much lately and we have certainly missed you.(Sun)
 
anemone said:
Prove that the polynomial equation $x^8-x^7+x^2-x+15=0$ has no real solution.

Hello.

y=x^8-x^7+x^2-x+15

y&#039;=8x^7-7x^6+2x-1=0

x_0 \approx{ }0.53079(unique real solution)

y&#039;&#039;=56x^6-42x^5+2

For \ x_0 \approx{ }0.53079 \rightarrow{ }y&#039;&#039; \approx{ }1.48279 \rightarrow{ }x_0 \ it&#039;s \ minimum

y_0 \approx{ }14.7453 \rightarrow{}y \cancel{=} \ 0 \ (never)

Regards.
 
mente oscura said:
Hello.

y=x^8-x^7+x^2-x+15

y&#039;=8x^7-7x^6+2x-1=0

x_0 \approx{ }0.53079(unique real solution)

y&#039;&#039;=56x^6-42x^5+2

For \ x_0 \approx{ }0.53079 \rightarrow{ }y&#039;&#039; \approx{ }1.48279 \rightarrow{ }x_0 \ it&#039;s \ minimum

y_0 \approx{ }14.7453 \rightarrow{}y \cancel{=} \ 0 \ (never)

Regards.

Hey mente oscura, thanks for participating and yes, your approach works as well! Well done!:)
 
$\bf{Solution::}$ Let $f(x) = x^8-x^7+x^2-x+15$, we check real solution in $\bf{x\in \mathbb{R}}$

$\bullet$ If $x\leq 0$, Then $f(x) = x^8-x^7+x^2-x+15>0$

$\bullet$ If $0<x<1$, Then $f(x) = x^8+x^2(1-x^5)+(1-x)+14>0$

$\bullet$ If $x\geq 1$, Then $f(x)= x^7(x-1)+x(x-1)+15>0$

So we observe that $f(x)= x^8-x^7+x^2-x+15>0\;\forall x\in \mathbb{R}$

So $f(x)=x^8-x^7+x^2-x+1=0$ has no real roots for all $x\in \mathbb{R}$
- - - Updated - - -

**Another Solution::**

If $x<0,$ note that $x^8+(-x^7)+x^2+(-x)>0,$ so the polynomial cannot have any negative roots.If $x\geq 0,$ then note that from AM-GM inequality we have:
$\left\{\begin{aligned}& \frac 78 x^8+\frac 18\geq x^7\\& x^2+\frac 14\geq x\end{aligned}\right\} ;$

Thus $\displaystyle\frac 78x^8-x^7+x^2-x+\frac 38>0;$
 
Last edited by a moderator:
jacks said:
$\bf{Solution::}$ Let $f(x) = x^8-x^7+x^2-x+15$, we check real solution in $\bf{x\in \mathbb{R}}$

$\bullet$ If $x\leq 0$, Then $f(x) = x^8-x^7+x^2-x+15>0$

$\bullet$ If $0<x<1$, Then $f(x) = x^8+x^2(1-x^5)+(1-x)+14>0$

$\bullet$ If $x\geq 1$, Then $f(x)= x^7(x-1)+x(x-1)+15>0$

So we observe that $f(x)= x^8-x^7+x^2-x+15>0\;\forall x\in \mathbb{R}$

So $f(x)=x^8-x^7+x^2-x+1=0$ has no real roots for all $x\in \mathbb{R}$
- - - Updated - - -

**Another Solution::**

If $x<0,$ note that $x^8+(-x^7)+x^2+(-x)>0,$ so the polynomial cannot have any negative roots.If $x\geq 0,$ then note that from AM-GM inequality we have:
$\left\{\begin{aligned}& \frac 78 x^8+\frac 18\geq x^7\\& x^2+\frac 14\geq x\end{aligned}\right\} ;$

Thus $\displaystyle\frac 78x^8-x^7+x^2-x+\frac 38>0;$

Hey jacks, thanks for participating and it's so nice to see so many people answered to my challenge problem!:o
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
2
Views
2K
Replies
1
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K