Prove the rotational invariance of the Laplace operator

  • #1
587
242
Homework Statement
prove ##\Delta## is rotation invariant.
Relevant Equations
##\Delta##
Screen Shot 2021-01-24 at 10.08.21 PM.png

Hello, please lend me your wisdom.

##\Delta u=\partial_{x1}^2u+\partial_{x2}^2u+...+\partial_{xn}^2u##

##Rx=\left<r_{11}x_1+...r_{1n}x_n+...+r_{n1}x_1+...+r_{nn}x_n\right>##

##(\Delta u)(Rx)=(\partial_{x1}^2u+\partial_{x2}^2u+...+\partial_{xn}^2u)\left<r_{11}x_1+...r_{1n}x_n, ...,r_{n1}x_1+...+r_{nn}x_n\right>##


##u\circ R=##

##\begin{pmatrix}
(u)r_{11} & ... & (u)r_{1n} \\
... & ... & ... \\
(u)r_{n1} & ... & (u)r_{nn}
\end{pmatrix}##

##u\circ R x=\left<(u)r_{11}x_1+...(u)r_{1n}x_n+...+(u)r_{n1}x_1+...+(u)r_{nn}x_n\right>##

##\Delta u\circ R x= (\partial_{x1}^2+\partial_{x2}^2+...+\partial_{xn}^2)\left<(u)r_{11}x_1+...(u)r_{1n}x_n+...+(u)r_{n1}x_1+...+(u)r_{nn}x_n\right>=##

##(\partial_{x1}^2u+\partial_{x2}^2u+...+\partial_{xn}^2u)\left<r_{11}x_1+...r_{1n}x_n, ...,r_{n1}x_1+...+r_{nn}x_n\right>=(\Delta u)(Rx)##

I think ##u\circ R## does not mean ##(u) (R)## and I just showed the same calculation twice. How do I use the information ##R^{-1}=R^T## to prove this case?
 

Answers and Replies

  • #2
Let us take z-axis as axis of rotation of angle ##\alpha## and take cylindrical coordinates or spherical coordinates. For the rotation
[tex]\phi'=\phi + \alpha[/tex]
, we get rotation invariance of Laplacian because
[tex]\frac{\partial^2}{\partial \phi^2}=\frac{\partial^2}{\partial \phi'^2}[/tex]
 
  • Like
Likes docnet and dRic2

Suggested for: Prove the rotational invariance of the Laplace operator

Replies
1
Views
355
Replies
3
Views
530
Replies
1
Views
363
Replies
12
Views
981
Replies
0
Views
363
Replies
11
Views
792
Replies
2
Views
464
Replies
18
Views
627
Replies
10
Views
846
Back
Top