Prove x²+y²+z² ≤ 2 For 0 ≤ x,y,z ≤ 1 with xy+yz+zx=1

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary

Discussion Overview

The discussion revolves around proving the inequality \(1 \leq x^2 + y^2 + z^2 \leq 2\) for variables \(x\), \(y\), and \(z\) constrained within the interval \([0, 1]\) and subject to the condition \(xy + yz + zx = 1\). The focus is on the mathematical reasoning and potential solutions to this problem.

Discussion Character

  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Some participants reiterate the problem statement, emphasizing the need to prove the inequality under the given constraints.
  • One participant expresses appreciation for another's contribution, indicating a supportive atmosphere but not necessarily advancing the mathematical argument.
  • Another participant acknowledges the efforts of a contributor without providing additional insights or solutions.

Areas of Agreement / Disagreement

There appears to be no consensus on the proof or specific approaches to the problem, as multiple participants simply restate the problem without presenting distinct solutions or arguments.

Contextual Notes

The discussion lacks detailed mathematical steps or assumptions that might clarify the path to proving the inequality, leaving the exploration of the problem somewhat open-ended.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
For $x,\,y$ and $z\in [0,\,1]$ such that $xy+yz+zx=1$, prove $1\le x^2+y^2+z^2\le 2$.
 
Mathematics news on Phys.org
anemone said:
For $x,\,y$ and $z\in [0,\,1]$ such that $xy+yz+zx=1$, prove $1\le x^2+y^2+z^2\le 2$.
my solution:
$Using \,\, AP\geq GP$

$left \,\, side\\
x^2+y^2\geq 2xy---(1)\\
y^2+z^2\geq 2yz---(2)\\
z^2+x^2\geq 2zx---(3)\\
(1)+(2)+(3):2(x^2+y^2+z^2)\geq 2(xy+yz+zx)=2\\
\therefore x^2+y^2+z^2\geq 1\\$
$right \,\, side\\
(x+y+z)^2=x^2+y^2+z^2+2\leq x+y+z+2---(4)\\
(for\,\, 0\leq x,y,z\leq 1)\\
let: (x+y+z)=k\\
we \,\, have:k^2-k-2=(k+1)(k-2)\leq 0\rightarrow 0\leq k\leq 2\\
from (4):x^2+y^2+z^2\leq 2$

$the\,\,proof\,\, is \,\, done$
 
Last edited:
Albert said:
my solution:
$Using \,\, AP\geq GP$

$left \,\, side\\
x^2+y^2\geq 2xy---(1)\\
y^2+z^2\geq 2yz---(2)\\
z^2+x^2\geq 2zx---(3)\\
(1)+(2)+(3):2(x^2+y^2+z^2)\geq 2(xy+yz+zx)=2\\
\therefore x^2+y^2+z^2\geq 1\\$
$right \,\, side\\
(x+y+z)^2=x^2+y^2+z^2+2\leq x+y+z+2---(4)\\
(for\,\, 0\leq x,y,z\leq 1)\\
let: (x+y+z)=k\\
we \,\, have:k^2-k-2=(k+1)(k-2)\leq 0\rightarrow 0\leq k\leq 2\\
from (4):x^2+y^2+z^2\leq 2$

$the\,\,proof\,\, is \,\, done$
Good job Albert and thanks for participating!(Cool)
 
anemone said:
For $x,\,y$ and $z\in [0,\,1]$ such that $xy+yz+zx=1$, prove $1\le x^2+y^2+z^2\le 2$.

We have $2x^2+2y^2 + 2z^2 - 2xy - 2yz - 2zx = (x-y)^2 + (y-z)^2 + (z-x)^2$
hence $2x^2+2y^2 + 2z^2 - 2xy - 2yz - 2zx >=0$
or $2x^2+2y^2 + 2z^2 >= 2xy + 2yz + 2zx =2$
or $x^2+y^2+z^2 >= 1$
further
letting $x=\tan\,A$, $y=\tan\, B$, $z\tan\, C$ we have A, B, C, between 0 and $\frac{\pi}{4}$
also $\tan\, A \tan\, B + \tan\, B \tan\, C + \tan\, C \tan\, A = 1$
using $\tan(A+B+C)$ we get
$A+B+C=\frac{\pi}{2}$
so $B+C>=A$ from above and A between 0 and $\frac{\pi}{4}$
so $x <= y+z$
so $x^2 <= xy + zx$
similarly $y^2 <=yz + yx$
and $z^2 <= zx + yz$
adding the 3 we get $x^2+y^2+z^2<=2(xy+yz+zx)$ or 2
 
Last edited:
kaliprasad said:
We have $2x^2+2y^2 + 2z^2 - 2xy - 2yz - 2zx = (x-y)^2 + (y-z)^2 + (z-x)^2$
hence $2x^2+2y^2 + 2z^2 - 2xy - 2yz - 2zx >=0$
or $2x^2+2y^2 + 2z^2 >= 2xy + 2yz + 2zx =2$
or $x^2+y^2+z^2 >= 1$
further
letting $x=\tan\,A$, $y=\tan\, B$, $z\tan\, C$ we have A, B, C, between 0 and $\frac{\pi}{4}$
also $\tan\, A \tan\, B + \tan\, B \tan\, C + \tan\, C \tan\, A = 0$
using $\tan(A+B+C)$ we get
$A+B+C=\frac{\pi}{2}$
so $B+C>=A$ from above and A between 0 and $\frac{\pi}{4}$
so $x <= y+z$
so $x^2 <= xy + zx$
similarly $y^2 <=yz + yx$
and $z^2 <= zx + yz$
adding the 3 we get $x^2+y^2+z^2<=2(xy+yz+zx)$ or 2
Very good job, kaliprasad! Bravo!
 
kaliprasad said:
We have $2x^2+2y^2 + 2z^2 - 2xy - 2yz - 2zx = (x-y)^2 + (y-z)^2 + (z-x)^2$
hence $2x^2+2y^2 + 2z^2 - 2xy - 2yz - 2zx >=0$
or $2x^2+2y^2 + 2z^2 >= 2xy + 2yz + 2zx =2$
or $x^2+y^2+z^2 >= 1$
further
letting $x=\tan\,A$, $y=\tan\, B$, $z\tan\, C$ we have A, B, C, between 0 and $\frac{\pi}{4}$
also $\tan\, A \tan\, B + \tan\, B \tan\, C + \tan\, C \tan\, A = 0$
using $\tan(A+B+C)$ we get
$A+B+C=\frac{\pi}{2}$
so $B+C>=A$ from above and A between 0 and $\frac{\pi}{4}$
so $x <= y+z$
so $x^2 <= xy + zx$
similarly $y^2 <=yz + yx$
and $z^2 <= zx + yz$
adding the 3 we get $x^2+y^2+z^2<=2(xy+yz+zx)$ or 2
$\tan\, A \tan\, B + \tan\, B \tan\, C + \tan\, C \tan\, A =0$ ,$why ?$
 
Albert said:
$\tan\, A \tan\, B + \tan\, B \tan\, C + \tan\, C \tan\, A =0$ ,$why ?$

it was a typo I have done corrections should be 1
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
6K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K