Andrax
- 117
- 0
Homework Statement
let E be set of natural numbers where 0<n≤100 Card E = 55
Prove that there exists atleast 2 numbers a and b in each set where a-b=9
Homework Equations
\existsk1\in[[ ]] x1=9k1+r1 r1\in[[ ]]
\existsk2\in[[ ]] x1=9k2+r2 r2\in[[ ]]
.
.
.
\existsk55\in[[ ]] x1=9k55+r55 r2\in[[ ]]
(using derkil theory usually solves these kinds of problems )
but the above didn't help me, anyway i need to make sure that i could get any numbers from 1 to 100 in every equationi tried doing this
\existsk1\in[[1, 9 ]] x1=9k1+r1 r1\in[[1,54 ]]
\existsk2\in[[1 , 9 ]] x1=9k2+r2 r2\in[[ 1,54 ]]
.
.
.
\existsk55\in[[1 ,9 ]] x1=9k55+r55 r2\in[[1,54 ]]
we have 55 r and these r are all in a setB Card b = 54
then atleast there exists ri and rj where ri = rj
so there exists xi and xj such as xi - xj = 9(ki-kj)+ri-ri
xi-xj=9(ki-kj)
now this sadly dosen't get me anywhere because ki - kj must be equal to 1 or -1 .. ( i hope you guys are getting what I'm trying to do here)
anyway i randomly noticed that 54/6 = 9 so i tried another way ..
\existsk1\in[[ [2] , [3] ]] x1=54/k1+r1 r1\in[[ ]]
\existsk2\in[[ [2] , [3] ]] x1=54/k2+r2 r2\in[[ ]]
.
.
.
\existsk55\in[[ [2] , [3] ]] x1=54/k55+r55 r2\in[[ ]]
now tis way "might" work if and only if the ki and kj are different we will have
xi-xj= 54/ki - 54/kj
=(54ki-54kj)/kikj
but the problem on this one is that i can't find a set which contains r's and it's card <55..
i really need help on this problem