MHB Proving Existence of Surjective Function F from P(N)\N to P(N)

Ella1
Messages
2
Reaction score
0
I'd really like some help in answering the next question...anything that might help will save my life:

F is defined this way: F:A→B where A,B⊂P(N) and P(N) is the power set of the naturals.
Let S,R∈A such that S is a proper subset of R if and only if F(S) is a proper subset of F(R)

My question is to prove whether or not there is an F from P(N)∖N to P(N) which is also a surjective function?
 
Physics news on Phys.org
Ella said:
F is defined this way: F:A→B where A,B⊂P(N) and P(N) is the power set of the naturals.
This is not a complete definition of $F$. This just fixes (to some unknown $A$ and $B$) the domain and codomain of $F$ and not the rule that establishes which sets are mapped to which sets.

Ella said:
Let S,R∈A such that S is a proper subset of R if and only if F(S) is a proper subset of F(R)
This does not define $S$ and $R$ uniquely, so I am not sure what the role of this phrase is. Perhaps it is supposed to be a restriction on $F$ and this property is supposed to hold for all $S$ and $R$.

Ella said:
My question is to prove whether or not there is an F from P(N)∖N to P(N) which is also a surjective function?
Since the question is about the existence of $F$, the previous definition of $F$ is apparently irrelevant. Without any restrictions, yes, there exists a bijection between $P(\mathbb{N})\setminus\mathbb{N}$ and $P(\mathbb{N})$ because both sets has cardinality continuum.
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top