Undergrad Proving functions are linearly dependent

  • Thread starter Thread starter brotherbobby
  • Start date Start date
  • Tags Tags
    Functions Linearly
Click For Summary
The discussion revolves around proving the linear independence of a set of functions, specifically ##\varphi_1(t) = \sin^2 t, \varphi_2(t) = \cos^2 t, \varphi_3(t) = t, \varphi_4(t) = 3,## and ##\varphi_5(t) = e^t##. A nontrivial linear combination of the first three functions is presented, showing they can sum to zero, which raises questions about their independence. Participants clarify that if any two functions are linearly dependent, the larger set is also dependent. The conversation emphasizes the importance of understanding linear combinations and the implications of linear dependence in function sets. The discussion concludes with a reminder that a nontrivial linear combination demonstrates the relationship among the functions.
brotherbobby
Messages
755
Reaction score
170
TL;DR
We have set of functions ##\varphi (t)## continuous in the interval ##[a,b]##. The set is a linear (vector) space with the usual definitions of addition and multiplication by real numbers. We denote this space by ##C[a,b]##.

Statement of the problem : Prove that the following set of functions are linearly independent in the space ##C[a,b]## mentioned above : ##\varphi_1(t) = \sin^2 t, \varphi_2(t) = \cos^2 t, \varphi_3(t) = t, \varphi_4(t) = 3 \; \text{and} \; \varphi_1(t) = e^t##
We can make the first three functions add up to zero in the following way : ##\sin^2 t+\cos^2 t-\frac{1}{3}\times 3 = \varphi_1(t) + \varphi_2(t) - \frac{1}{3} \varphi_3(t) = 0##.

However, look at ##\varphi_4(t) = t## and ##\varphi_5(t) = e^t##. How does one combine the two to add up to zero? I can't see a way out.

Any help would be appreciated.
 
Physics news on Phys.org
What about using the differentiability of these functions?
 
brotherbobby said:
Summary:: We have set of functions ##\varphi (t)## continuous in the interval ##[a,b]##. The set is a linear (vector) space with the usual definitions of addition and multiplication by real numbers. We denote this space by ##C[a,b]##.

##\text{Statement of the problem :}## Prove that the following set of functions are linearly independent in the space ##C[a,b]## mentioned above : ##\varphi_1(t) = \sin^2 t, \varphi_2(t) = \cos^2 t, \varphi_3(t) = t, \varphi_4(t) = 3 \; \text{and} \; \varphi_1(t) = e^t##

We can make the first three functions add up to zero in the following way : ##\sin^2 t+\cos^2 t-\frac{1}{3}\times 3 = \varphi_1(t) + \varphi_2(t) - \frac{1}{3} \varphi_3(t) = 0##.

However, look at ##\varphi_4(t) = t## and ##\varphi_5(t) = e^t##. How does one combine the two to add up to zero? I can't see a way out.

Any help would be appreciated.
You say you want to show linear independence, but you gave a non trivial linear combination?
If ##\vec{u},\vec{v}## are linearly dependent, then ##\{\,\vec{u},\vec{v},\vec{w}\,\}## are automatically linearly dependent, too.
 
fresh_42 said:
You say you want to show linear independence, but you gave a non trivial linear combination?
If ##\vec{u},\vec{v}## are linearly dependent, then ##\{\,\vec{u},\vec{v},\vec{w}\,\}## are automatically, too, linearly dependent.

I assumed the question is to investigate the linear indepence of these functions.
 
fresh_42 said:
You say you want to show linear independence, but you gave a non trivial linear combination?
If ##\vec{u},\vec{v}## are linearly dependent, then ##\{\,\vec{u},\vec{v},\vec{w}\,\}## are automatically, too, linearly dependent.

Many thanks. Sorry I forgot this is a theorem. "Given any two linearly dependent functions, any larger set of vectors involving the two is also linearly dependent".

Many thanks and apologies.
 
You don't need to cite any theorem: ##\sin^2(t)+\cos^2(t)+0\cdot t-\frac{1}{3}3+0\cdot e^t## is a nontrivial linear combination that is zero (and this example should make it clear why that theorem is true).
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 21 ·
Replies
21
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K