happyg1
- 304
- 0
Hi,
I'm working on this:
Given that \lim_{n \to \infty} \psi(n)=0 and that b and c do not depend upon n, prove that:
\lim_{n\to \infty}\left[ 1+\frac{b}{n} +\frac{\psi(n)}{n}\right]^{cn} = \lim_{n\to\infty} \left(1+\frac{b}{n}\right)^{cn}=e^{bc}
So far, I've taken the natural log of both sides, moved the cn into the bottom and applied L'hopitals rule. I get:
\lim_{n\to\infty}\frac{\frac{1}{1+\frac{b}{n} +\frac{\psi(n)}{n}}\left(\frac{-b}{n^2} + \frac{\psi'(n)}{n}-\frac{\psi(n)}{n^2}\right)}} {\frac{-1}{c n^2}}}=\lim_{n\to \infty}bc
which breaks down to:
\lim_{n\to\infty}\frac{1}{1+\frac{b}{n}+\frac{\psi(n)}{n}}\left(-cn\psi'(n)-c\psi(n)+bc)\right)
If the limit of a function goes to zero, how do we prove that it's derivative goes to zero?
I'm not sure where to go now, because I don't know what to do with \psi'(n) how can I prove that it's zero? If it IS zero, then the whole thing falls out nicely.
Thanks,
CC
I'm working on this:
Given that \lim_{n \to \infty} \psi(n)=0 and that b and c do not depend upon n, prove that:
\lim_{n\to \infty}\left[ 1+\frac{b}{n} +\frac{\psi(n)}{n}\right]^{cn} = \lim_{n\to\infty} \left(1+\frac{b}{n}\right)^{cn}=e^{bc}
So far, I've taken the natural log of both sides, moved the cn into the bottom and applied L'hopitals rule. I get:
\lim_{n\to\infty}\frac{\frac{1}{1+\frac{b}{n} +\frac{\psi(n)}{n}}\left(\frac{-b}{n^2} + \frac{\psi'(n)}{n}-\frac{\psi(n)}{n^2}\right)}} {\frac{-1}{c n^2}}}=\lim_{n\to \infty}bc
which breaks down to:
\lim_{n\to\infty}\frac{1}{1+\frac{b}{n}+\frac{\psi(n)}{n}}\left(-cn\psi'(n)-c\psi(n)+bc)\right)
If the limit of a function goes to zero, how do we prove that it's derivative goes to zero?
I'm not sure where to go now, because I don't know what to do with \psi'(n) how can I prove that it's zero? If it IS zero, then the whole thing falls out nicely.
Thanks,
CC
Last edited: