Proving Linear Filtering of Gaussian Process Still Gaussian

chingkui
Messages
178
Reaction score
2
How to prove the output of Linear Filtering a Gaussian Process is still Gaussian? It has been stated in many books I read, but none of them actually prove it. One even stated that "The technical mechinery to prove this property is beyond the scope of this book..."
By definition, a Gaussian process is a function x such that for any finite integer k, and for any arbitary time t1, t2, ..., tk, that x(t1), x(t2), ..., x(tk) are jointly Gaussian RV.
To linear filter the process x(t) means just to convolute it with a function h(t), i.e., the output y(t)=h(t)*x(t)=integrate(h(t-s)x(s)ds)
To prove the statement is to prove that for any m>0, and any time t1,..., tm, that y(t1),...,y(tm) are jointly Gaussian.
Is it that difficult to prove? What does one need to prove it?
It is quite obvious that a Gaussian RV remains Gaussian after linear filtering it, but for a Gaussian process, I am not sure what to use to prove that. Does anyone know how? Thanks.
 
Physics news on Phys.org
I suspect that the a formal proof will be quite technical. However, to understand it intuitively, one may try to discretise the integral in the definition of y(t). The decretised integral is a linear combination of jointly Gaussian variables, and is therefore Gaussian. Each of the y(ti) can be discretised this way, and each is a linear combination of a set of jointly Gaussian variables, and {y(ti)} is therefore jointly Gaussian.

Of course this is far from being a proof. But I think this theorem belongs to the category where it can be easily understood but not easily proved.
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top