Proving n2 < n! for n > 3: Simplifying the Induction Step

  • Thread starter Thread starter murshid_islam
  • Start date Start date
  • Tags Tags
    Induction Proof
AI Thread Summary
The discussion focuses on proving the inequality n^2 < n! for n > 3 using mathematical induction. The base case for n = 4 is established as true since 4^2 < 4!. The inductive step involves assuming the inequality holds for n = k and proving it for n = k + 1, which participants agree is somewhat complex but valid. Suggestions for simplification include recognizing that proving k + 1 < k^2 is easier due to k(k - 1) > 1 for k > 3. Overall, while the proof may feel forced, it is acknowledged as clear and well-reasoned.
murshid_islam
Messages
468
Reaction score
21
i have to prove by induction that n2 < n! for n > 3

this is what i have done:

the base case (n = 4) is obviously true since 42 < 4!

now, assume that it is true for n = k, i.e., k2 < k!

now i have to prove it for n = k+1

since k > 3,
1 < k-1
1(k+1) < (k-1)(k+1)
k+1 < k2 - 1 < k2 < k!
k+1 < k!
(k+1)(k+1) < (k+1)k!
(k+1)2 < (k+1)!

what i have done seems ok to me. but is there any simpler way to do the induction step? what i have done seems a bit "forced" (if you know what i mean).

thanks in advance.
 
Mathematics news on Phys.org
murshid_islam said:
i have to prove by induction that n2 < n! for n > 3

this is what i have done:

the base case (n = 4) is obviously true since 42 < 4!

now, assume that it is true for n = k, i.e., k2 < k!

now i have to prove it for n = k+1

since k > 3,
1 < k-1
1(k+1) < (k-1)(k+1)
k+1 < k2 - 1 < k2 < k!
k+1 < k!
(k+1)(k+1) < (k+1)k!
(k+1)2 < (k+1)!

what i have done seems ok to me. but is there any simpler way to do the induction step? what i have done seems a bit "forced" (if you know what i mean).

thanks in advance.
The steps you take seem correct. A bit simpler way is to think of what you want to prove: (k+1)2<(k+1)! and by using equivalent relations to simplify it, like this for example:

(k+1)2<(k+1)!<=>
(k+1)(k+1)<k! (k+1)<=> *note k+1>0*
k+1<k!

We know that k2<k! so we just have to prove that k+1<k2, which is easy because k(k-1)>1 for any k>3
 
Last edited:
I'm not a big fan of this particular inductive proof, since I've never found a short argument that didn't require me to manipulate both sides of the inequality like that. I've seen a similar proof on www.inductiveproofs.com that is 2^n < n! -- maybe that one will provide some inspiration.
 
murshid_islam said:
i have to prove by induction that n2 < n! for n > 3

this is what i have done:

the base case (n = 4) is obviously true since 42 < 4!

now, assume that it is true for n = k, i.e., k2 < k!

now i have to prove it for n = k+1

since k > 3,
1 < k-1
1(k+1) < (k-1)(k+1)
k+1 < k2 - 1 < k2 < k!
k+1 < k!
(k+1)(k+1) < (k+1)k!
(k+1)2 < (k+1)!

what i have done seems ok to me. but is there any simpler way to do the induction step? what i have done seems a bit "forced" (if you know what i mean).

thanks in advance.

Thereis no simpleway of doing this . For all mathematcialproof by inductionyou must assume p(k) is true and then prove p(K+1) is true for all n =1,2... which you haveseem tobe done any way
 
murshid_islam said:
i have to prove by induction that n2 < n! for n > 3

this is what i have done:

the base case (n = 4) is obviously true since 42 < 4!

now, assume that it is true for n = k, i.e., k2 < k!

now i have to prove it for n = k+1

since k > 3,
1 < k-1
1(k+1) < (k-1)(k+1)
k+1 < k2 - 1 < k2 < k!
k+1 < k!
(k+1)(k+1) < (k+1)k!
(k+1)2 < (k+1)!

what i have done seems ok to me. but is there any simpler way to do the induction step? what i have done seems a bit "forced" (if you know what i mean).

thanks in advance.

i know exactly what you mean. the trouble is, for n < 4, the theorem simply isn't true:

12 = 1! = 1
22 > 2! = 2
32 > 3! = 6

and it's not like for n = 3, we have equality, or that 32 is "just barely" more than 3!, the break-even point is somewhere between 3 and 4 (if you were using the gamma function, for example). so when we get to the part where we use n > 3:

1 < k-1

it's not "elegant", we prove something a little stronger than we need (after all, k = 3 would make that statement true, but then our "base case" fails).

this often happens with inequalities, the bounding term is often something that is more than "just barely greater than".

i wouldn't worry over-much about this, your proof is clear, clean, and well-reasoned. there's bigger molehills to make into mountains, if you're into that sort of thing.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top