Proving p<=>~p: Two Contradictory and Identical Proofs Explained

  • Context: MHB 
  • Thread starter Thread starter solakis1
  • Start date Start date
  • Tags Tags
    Proofs
Click For Summary
SUMMARY

The discussion focuses on two contradictory proofs of the statement p<=>~p, demonstrating that the first proof leads to a contradiction while the second results in an identity. Both proofs utilize the definition of biconditional and various logical implications, including Modus Ponens and material implication. The conclusion drawn is that the assumption p<=>~p is a self-contradiction, as it can derive both a contradiction (⊥) and a tautology (⊤), illustrating the strength of logical formulas.

PREREQUISITES
  • Understanding of propositional logic and biconditional statements.
  • Familiarity with logical implications, including Modus Ponens and material implication.
  • Knowledge of tautologies and contradictions in formal logic.
  • Basic grasp of syntactic versus semantic implications in logic.
NEXT STEPS
  • Study the completeness theorem in propositional logic.
  • Learn about the properties of tautologies and contradictions in formal proofs.
  • Explore advanced topics in propositional logic, such as inference rules and their applications.
  • Investigate the relationship between syntactic derivations and semantic truth in logic.
USEFUL FOR

Logicians, philosophy students, mathematicians, and anyone interested in the foundations of logical reasoning and proof theory.

solakis1
Messages
407
Reaction score
0
CANNOT FIGURE THIS OUT:

proof No1

1. p<=>~p.........assumption

2. (p<=>~p)<=>[(p=>~p)^(~p=>p)]......definition of (1)

3. (p<=>~p)=>[(p=>~p)^(~p=>p)].....2,and Biconditional Elimination

4. (p=>~p)^(~p=>p).........1,3 M.Ponens

5. (~p=>p)............4, Simplification

6. (p=>~p)............4,and using Simplification

7. ~~pvp............5, material implication

8. ~pv~p............6, material implication

9. pvp.............7. negation elimination

10. ~p.............8, idempontent law

11. p.............9, idempontent law

12. ~p^p............10,11 and Conjunctionproof No 2

1. p<=>~p.........assumption

2. (p<=>~p)<=>[(p=>~p)^(~p=>p)]......definition of (1)

3. (p<=>~p)=>[(p=>~p)^(~p=>p)].....2, Biconditional Elimination

4. (p=>~p)^(~p=>p).........1,3 M.Ponens

5. p=>p............4, hypothetical Syllogism

6. ~pvp............5, material implication

In the 1st proof we ended up with a contradiction ,while in the 2nd proof with an identity
 
Physics news on Phys.org
Let's define a formula $A$ to be stronger than a formula $B$ (or $B$ weaker than $A$) if $A\to B$ is a tautology, or, equivalently, $A\vdash B$. Then $\bot$ (the contradiction) is the strongest formula because $\bot\to B$ is true for any $B$. Conversely, $\top$ (the tautology) is the weakest formula because $A\to\top$ is true for any $A$. Derivation 2 shows that $p\leftrightarrow\neg p\vdash\top$, but this is obvious since every formula is stronger than $\top$. Derivation 1 shows that $p\leftrightarrow\neg p\vdash\bot$, which shows that $p\leftrightarrow\neg p$ is at least as strong as $\bot$ and, therefore, is equivalent to $\bot$.
 
Or, put another way, your assumption is a self-contradiction. Since you can prove anything whatsoever from a contradiction, it's not surprising that you got two such widely different results from a contradiction.
 
Evgeny.Makarov said:
because $A\to\top$ is true for any $A$

So how are you going to prove that any formula A logically implies M.PONENS for e.g

I mean syntactically not semantically ,like you did.

And then generally that any formula A logically implies any identity B
 
Ackbach said:
Or, put another way, your assumption is a self-contradiction. .

I was trying to prove that syntactically
 
solakis said:
So how are you going to prove that any formula A logically implies M.PONENS for e.g
I am not sure what you mean by "formula A logically implies M.PONENS". Modus Ponens is an inference rule, but only formulas can be logically implied.

solakis said:
And then generally that any formula A logically implies any identity B
I am not sure what you mean by "identity". If you mean tautology, then it is logically implied by definition. We say that $A$ logically implies $B$, written as $A\models B$, if $B$ is true in every interpretation in which $A$ is true. If you mean that $A$ derives $B$, written $A\vdash B$, for any tautology $B$ and any formula $A$, then this is the content of the completeness theorem (which shows $\vdash B$ for any tautology $B$).
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 32 ·
2
Replies
32
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 18 ·
Replies
18
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 13 ·
Replies
13
Views
3K