MHB Proving Prime Norms of H: (a,b) in Z

  • Thread starter Thread starter Hud123
  • Start date Start date
  • Tags Tags
    Primes
Hud123
Messages
2
Reaction score
0
H is a number system where (a,b) belongs in H where a and b is an element of Z(integer)

Addition and multiplication are defined as follows:

(a, b) + (c, d) := (a + c , b + d)

(a, b) x (c, d) := (ac-5bd , ad+bc)

For any number (a,b) in H, we can define its norm by

||(a, b)|| := a^2+5*(b^2)

Prove that (a, b) is prime in H if ||(a, b)|| is prime in N(Natural numbers)

I'm having a bit of trouble where to start for this proof, can anyone help?

Also how could I show say (5,0) is not prime in H while it is in N?

Thank you in advance
 
Mathematics news on Phys.org
Hud123 said:
H is a number system where (a,b) belongs in H where a and b is an element of Z(integer)

Addition and multiplication are defined as follows:

(a, b) + (c, d) := (a + c , b + d)

(a, b) x (c, d) := (ac-5bd , ad+bc)

For any number (a,b) in H, we can define its norm by

||(a, b)|| := a^2+5*(b^2)

Prove that (a, b) is prime in H if ||(a, b)|| is prime in N(Natural numbers)

I'm having a bit of trouble where to start for this proof, can anyone help?

Also how could I show say (5,0) is not prime in H while it is in N?

Thank you in advance
Hi Hud and welcome to MHB!

The key property of a norm in a number system is that it should satisfy the condition $\|(a,b)\times (c,d)\| = \|(a,b)\|\,\|(c,d)\|.$ So your first job should be to check that this multiplicative condition holds here. Namely, you need to check that $(ac-5bd)^2 + 5(ad+bc)^2 = (a^2 + 5b^2)(c^2 + 5d^2)$. Once you have done that, you need to figure out why that property implies that a prime in $H$ is necessarily a prime in $\mathbb{N}$.

That property also tells you that if $(5,0)$ is equal to a product in $H$, say $(5,0) = (a,b)\times (c,d)$, then $\|(a,b)\|\,\|(c,d)\| = \|(5,0)\| = 25$. Since $25 = 5\times5$, it looks as though you should be trying to find elements $(a,b)$ and $(c,d)$ in $H$ with norm $5$.
 
Thank you for the reply, I have proved that the multiplicative holds but I am not too certain what property I should be looking at?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top