MHB Proving Prime Norms of H: (a,b) in Z

  • Thread starter Thread starter Hud123
  • Start date Start date
  • Tags Tags
    Primes
Click For Summary
In the discussion, the number system H is defined with elements (a, b) where a and b are integers, and operations of addition and multiplication are specified. The norm of an element in H is given by ||(a, b)|| = a^2 + 5b^2. To prove that (a, b) is prime in H if its norm is prime in the natural numbers, one must verify that the multiplicative property of the norm holds. Additionally, to demonstrate that (5, 0) is not prime in H while being prime in N, one should find elements (a, b) and (c, d) in H such that their product equals (5, 0) and has a norm of 25, indicating that (5, 0) can be expressed as a product of other elements in H. Understanding these properties is crucial for completing the proof.
Hud123
Messages
2
Reaction score
0
H is a number system where (a,b) belongs in H where a and b is an element of Z(integer)

Addition and multiplication are defined as follows:

(a, b) + (c, d) := (a + c , b + d)

(a, b) x (c, d) := (ac-5bd , ad+bc)

For any number (a,b) in H, we can define its norm by

||(a, b)|| := a^2+5*(b^2)

Prove that (a, b) is prime in H if ||(a, b)|| is prime in N(Natural numbers)

I'm having a bit of trouble where to start for this proof, can anyone help?

Also how could I show say (5,0) is not prime in H while it is in N?

Thank you in advance
 
Mathematics news on Phys.org
Hud123 said:
H is a number system where (a,b) belongs in H where a and b is an element of Z(integer)

Addition and multiplication are defined as follows:

(a, b) + (c, d) := (a + c , b + d)

(a, b) x (c, d) := (ac-5bd , ad+bc)

For any number (a,b) in H, we can define its norm by

||(a, b)|| := a^2+5*(b^2)

Prove that (a, b) is prime in H if ||(a, b)|| is prime in N(Natural numbers)

I'm having a bit of trouble where to start for this proof, can anyone help?

Also how could I show say (5,0) is not prime in H while it is in N?

Thank you in advance
Hi Hud and welcome to MHB!

The key property of a norm in a number system is that it should satisfy the condition $\|(a,b)\times (c,d)\| = \|(a,b)\|\,\|(c,d)\|.$ So your first job should be to check that this multiplicative condition holds here. Namely, you need to check that $(ac-5bd)^2 + 5(ad+bc)^2 = (a^2 + 5b^2)(c^2 + 5d^2)$. Once you have done that, you need to figure out why that property implies that a prime in $H$ is necessarily a prime in $\mathbb{N}$.

That property also tells you that if $(5,0)$ is equal to a product in $H$, say $(5,0) = (a,b)\times (c,d)$, then $\|(a,b)\|\,\|(c,d)\| = \|(5,0)\| = 25$. Since $25 = 5\times5$, it looks as though you should be trying to find elements $(a,b)$ and $(c,d)$ in $H$ with norm $5$.
 
Thank you for the reply, I have proved that the multiplicative holds but I am not too certain what property I should be looking at?
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 0 ·
Replies
0
Views
3K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K