MHB Proving Solution of Triangles with Tan Function

  • Thread starter Thread starter DrunkenOldFool
  • Start date Start date
  • Tags Tags
    Triangles
AI Thread Summary
The discussion focuses on proving the identity involving the tangent function for half-angles in a triangle. It starts with the expression relating the tangents of half-angles to the triangle's sides and area, using the half-angle identity, the area formula, and the law of sines. The proof involves manipulating the expression through multiplication and substitution, ultimately leading to a simplified form. The law of cosines is applied to express cosine terms in a suitable format for verification. The conclusion indicates that the identity holds true, inviting others to verify the proof.
DrunkenOldFool
Messages
20
Reaction score
0
In a triangle $ABC$, the sides opposite to vertices $A,B,C$ are $a,b,c$ respectively. I have to prove

$$ \frac{\tan\left( \frac{A}{2}\right)}{(a-b)(a-c)}+\frac{\tan\left( \frac{B}{2}\right)}{(b-c)(b-a)}+\frac{\tan\left( \frac{C}{2}\right)}{(c-a)(c-b)} = \frac{1}{\Delta}$$

$\Delta$ denotes the area of the triangle.
 
Mathematics news on Phys.org
I would consider the half-angle identity for tangent:

$\displaystyle \tan\left(\frac{\theta}{2} \right)=\frac{1-\cos(\theta)}{\sin(\theta)}$

and the formula:

$\displaystyle \Delta=\frac{1}{2}bc\sin(A)$

and the law of sines:

$\displaystyle \frac{\sin(A)}{a}=\frac{\sin(B)}{b}=\frac{\sin(C)}{c}$

to write the expression as:

$\displaystyle \frac{1-\cos(A)}{\sin(A)(a-b)(a-c)}+\frac{a(1-\cos(B))}{b\sin(A)(b-c)(b-a)}+\frac{a(1-\cos(C))}{c\sin(A)(c-a)(c-b)}=\frac{2}{bc\sin(A)}$

Multiply through by $\displaystyle bc\sin(A)$

$\displaystyle \frac{bc(1-\cos(A))}{(a-b)(a-c)}+\frac{ac(1-\cos(B))}{(b-c)(b-a)}+\frac{ab(1-\cos(C))}{(c-a)(c-b)}=2$

Multiply through by $\displaystyle (a-b)(a-c)(b-c)$:

$\displaystyle bc(b-c)(1-\cos(A))+ac(c-a)(1-\cos(B))+ab(a-b)(1-\cos(C))=2(a-b)(a-c)(b-c)$

Using the law of cosines, we may write:

$\displaystyle 1-\cos(A)=1-\frac{b^2+c^2-a^2}{2bc}=\frac{a^2-(b-c)^2}{2bc}$

$\displaystyle 1-\cos(B)=1-\frac{a^2+c^2-b^2}{2ac}=\frac{b^2-(a-c)^2}{2ac}$

$\displaystyle 1-\cos(C)=1-\frac{a^2+b^2-c^2}{2ab}=\frac{c^2-(a-b)^2}{2ab}$

and we have:

$\displaystyle (b-c)(a^2-(b-c)^2)+(c-a)(b^2-(a-c)^2)+(a-b)(c^2-(a-b)^2)=4(a-b)(a-c)(b-c)$

I shall leave you now to verify (as I have), that this is an identity.(Mmm)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top