MHB Proving that a subset of a countable set is countable

  • Thread starter Thread starter Mathmellow
  • Start date Start date
  • Tags Tags
    Set
Click For Summary
To prove that any subset of a countable set is either finite or countable, one can start by considering a subset V of a countable set S. If V is finite, the proof is straightforward since finite subsets of countably infinite sets exist. In the case where V is infinite, a bijection can be established by defining a mapping from the natural numbers to the elements of V, specifically by selecting the i-th smallest element of V. This demonstrates that any infinite subset of a countable set is also countable. The discussion emphasizes the importance of constructing a bijection to validate the countability of subsets.
Mathmellow
Messages
7
Reaction score
0
I am trying to prove that any subset of a countable set is either finite or countable.

I know that a set $$S$$ is countable if there exists a bijection that takes S to $$\Bbb{N}$$. My first thought was to consider the subset $$V$$ of $$S$$. If $$V$$ is finite we are done, since we can always construct a finite subset of a countably infinite set.
So I guess in the case where $$V$$ is infinite we want to prove that there is a bijection $$\beta: V\to\Bbb{N}$$. However, I am not sure how to do this.

I would really appreciate it if someone could help me with this, so I can feel more comfortable with these types of problems in the future!
 
Physics news on Phys.org
Mathmellow said:
I am trying to prove that any subset of a countable set is either finite or countable.

I know that a set $$S$$ is countable if there exists a bijection that takes S to $$\Bbb{N}$$. My first thought was to consider the subset $$V$$ of $$S$$. If $$V$$ is finite we are done, since we can always construct a finite subset of a countably infinite set.
So I guess in the case where $$V$$ is infinite we want to prove that there is a bijection $$\beta: V\to\Bbb{N}$$. However, I am not sure how to do this.

I would really appreciate it if someone could help me with this, so I can feel more comfortable with these types of problems in the future!

One just has to show that any infinite subset of $\mathbb N$ is in bijection with $\mathbb N$.

Let $A\subseteq \mathbb N$ be infinite. Define a map $f:\mathbb N\to A$ by declaring $f(i)$ to be the $i$-th smallest element of $A$. Then $f$ is a bijection.
 
Hello, I'm joining this forum to ask two questions which have nagged me for some time. They both are presumed obvious, yet don't make sense to me. Nobody will explain their positions, which is...uh...aka science. I also have a thread for the other question. But this one involves probability, known as the Monty Hall Problem. Please see any number of YouTube videos on this for an explanation, I'll leave it to them to explain it. I question the predicate of all those who answer this...