bjnartowt
- 265
- 3
Homework Statement
You know {\rm{Tr}}(XY) = \limits^{?} {\rm{Tr}}(YX), but prove it, using the rules of bra-ket algebra, sucka. (The late Sakurai does not actually call his reader "sucka").
Homework Equations
{\mathop{\rm Tr}\nolimits} (X) \equiv \sum\nolimits_{a'} {\left\langle {a'} \right|X\left| {a'} \right\rangle } [/itex]<br /> <br /> XY = Z = \left\langle {a&#039;&#039;} \right|Z\left| {a&#039;} \right\rangle = \left\langle {a&#039;&#039;} \right|XY\left| {a&#039;} \right\rangle = \sum\nolimits_{a&#039;&#039;&#039;} {\left\langle {a&#039;&#039;} \right|X\left| {a&#039;&#039;&#039;} \right\rangle \left\langle {a&#039;&#039;&#039;} \right|Y\left| {a&#039;} \right\rangle }<br /> <br /> <br /> <h2>The Attempt at a Solution</h2><br /> <br /> Obviously: XY ≠ YX, but Tr(XY) = Tr(YX). Therefore: there must be something about the trace that allows for this, and not about “X” and “Y”. We are therefore prompted to consider the definition of trace:<br /> <br /> {\mathop{\rm Tr}\nolimits} (X) \equiv \sum\nolimits_{a&#039;} {\left\langle {a&#039;} \right|X\left| {a&#039;} \right\rangle }<br /> <br /> We are also reminded of what matrix multiplication “looks like”:<br /> XY = Z = \left\langle {a&#039;&#039;} \right|Z\left| {a&#039;} \right\rangle = \left\langle {a&#039;&#039;} \right|XY\left| {a&#039;} \right\rangle = \sum\nolimits_{a&#039;&#039;&#039;} {\left\langle {a&#039;&#039;} \right|X\left| {a&#039;&#039;&#039;} \right\rangle \left\langle {a&#039;&#039;&#039;} \right|Y\left| {a&#039;} \right\rangle }<br /> <br /> So: the trace of this is the sum of the diagonal elements: I now use the First equation in "relevant equations" to say:<br /> {\mathop{\rm Tr}\nolimits} (XY) = {\mathop{\rm Tr}\nolimits} \left( {\sum\nolimits_{a&#039;&#039;&#039;} {\left\langle {a&#039;&#039;} \right|X\left| {a&#039;&#039;&#039;} \right\rangle \left\langle {a&#039;&#039;&#039;} \right|Y\left| {a&#039;} \right\rangle } } \right) = \sum\nolimits_{b&#039;} {\left( {\sum\nolimits_{a&#039;&#039;&#039;} {\left\langle {b&#039;} \right|X\left| {a&#039;&#039;&#039;} \right\rangle \left\langle {a&#039;&#039;&#039;} \right|Y\left| {b&#039;} \right\rangle } } \right)}<br /> <br /> Now: we calculated Tr(XY), but if I calculated Tr(YX) the same way, it seems the traces being equal would be thwarted by XY not being the same as YX.<br /> <br /> Hmmm...