- #1

Scootertaj

- 97

- 0

## Homework Statement

Show that the following = 0:

[itex]\int_{-\infty}^{+\infty} \! i*(\overline{d/dx(sin(x)du/dx})*u \, \mathrm{d} x + \int_{-\infty}^{+\infty} \! \overline{u}*(d/dx(sin(x)du/dx) \, \mathrm{d} x[/itex] where [itex]\overline{u}[/itex] = complex conjugate of u and * is the dot product.

**2. Work so far**

My thoughts: [itex]\int_{-\infty}^{+\infty} \! i*(\overline{d/dx(sin(x)du/dx})*u \, \mathrm{d} x + \int_{-\infty}^{+\infty} \! \overline{u}*(d/dx(sin(x)du/dx) \, \mathrm{d} x[/itex]

=

[itex]\int_{-\infty}^{+\infty} \! -i*(d/dx(sin(x)du/dx)*u \, \mathrm{d} x + \int_{-\infty}^{+\infty} \! \overline{u}*(d/dx(sin(x)du/dx) \, \mathrm{d} x[/itex]

But I don't even know if that's right.