Q: In a relative non-inertial reference frame, the fluid velocity is zero?

AI Thread Summary
In a non-inertial reference frame, the discussion centers on the fluid velocity being zero, specifically questioning why the time derivative of the fluid velocity, ##\left( \frac{\partial}{\partial t}u_{xyz} \right)##, equals zero in the context of equation (eq_1). The assumption is made to simplify the problem by eliminating the effects of changing fluid velocity as the cart accelerates. There is a clarification that the integral term in the governing equation represents the momentum accumulation rate of the solid mass within the control volume. This highlights the importance of understanding fluid dynamics in non-inertial frames and the implications of assumptions made in the analysis. The conversation emphasizes the need for clarity in applying these principles to fluid mechanics problems.
tracker890 Source h
Messages
90
Reaction score
11
Homework Statement
It's not apparent why the fluid velocity in the relative non-inertial reference frame is zero.
Relevant Equations
Momentum equation in non-inertial coordinates
Q: Regarding item (4), my understanding aligns with (eq_1), where M is a constant. However, why does ##\left( \frac{\partial}{\partial t}u_{xyz} \right)## in (eq_1) equal 0?

$$
\frac{\partial}{\partial t}\int_{CV}^{}{u_{xyz}}\rho d\forall =\frac{\partial}{\partial t}\left( u_{xyz}\cdot M \right) =M\left( \frac{\partial}{\partial t}u_{xyz} \right) =0\cdots \text{(}eq\_1\text{)}
$$
reference
1701185080605.png
 
Physics news on Phys.org
I believe that the reason for assumption 4 is to eliminate the reduction of fluid entering velocity as the cart increases its horizontal velocity.
 
  • Like
Likes TSny and tracker890 Source h
Lnewqban said:
I believe that the reason for assumption 4 is to eliminate the reduction of fluid entering velocity as the cart increases its horizontal velocity.
Thank you for the explanation. So, for now, let's consider it as an assumption for simplifying the problem.
 
tracker890 Source h said:
Homework Statement: It's not apparent why the fluid velocity in the relative non-inertial reference frame is zero.
Relevant Equations: Momentum equation in non-inertial coordinates

Q: Regarding item (4), my understanding aligns with (eq_1), where M is a constant. However, why does ##\left( \frac{\partial}{\partial t}u_{xyz} \right)## in (eq_1) equal 0?

$$
\frac{\partial}{\partial t}\int_{CV}^{}{u_{xyz}}\rho d\forall =\frac{\partial}{\partial t}\left( u_{xyz}\cdot M \right) =M\left( \frac{\partial}{\partial t}u_{xyz} \right) =0\cdots \text{(}eq\_1\text{)}
$$
reference
What you have written here is incorrect. The integral term on the LHS of the governing equation from the example is what represents the solid mass ##M## momentum accumulation rate (when solid mass is contained inside the control volume - that is accelerating)
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Back
Top