Q: In a relative non-inertial reference frame, the fluid velocity is zero?

AI Thread Summary
In a non-inertial reference frame, the discussion centers on the fluid velocity being zero, specifically questioning why the time derivative of the fluid velocity, ##\left( \frac{\partial}{\partial t}u_{xyz} \right)##, equals zero in the context of equation (eq_1). The assumption is made to simplify the problem by eliminating the effects of changing fluid velocity as the cart accelerates. There is a clarification that the integral term in the governing equation represents the momentum accumulation rate of the solid mass within the control volume. This highlights the importance of understanding fluid dynamics in non-inertial frames and the implications of assumptions made in the analysis. The conversation emphasizes the need for clarity in applying these principles to fluid mechanics problems.
tracker890 Source h
Messages
90
Reaction score
11
Homework Statement
It's not apparent why the fluid velocity in the relative non-inertial reference frame is zero.
Relevant Equations
Momentum equation in non-inertial coordinates
Q: Regarding item (4), my understanding aligns with (eq_1), where M is a constant. However, why does ##\left( \frac{\partial}{\partial t}u_{xyz} \right)## in (eq_1) equal 0?

$$
\frac{\partial}{\partial t}\int_{CV}^{}{u_{xyz}}\rho d\forall =\frac{\partial}{\partial t}\left( u_{xyz}\cdot M \right) =M\left( \frac{\partial}{\partial t}u_{xyz} \right) =0\cdots \text{(}eq\_1\text{)}
$$
reference
1701185080605.png
 
Physics news on Phys.org
I believe that the reason for assumption 4 is to eliminate the reduction of fluid entering velocity as the cart increases its horizontal velocity.
 
  • Like
Likes TSny and tracker890 Source h
Lnewqban said:
I believe that the reason for assumption 4 is to eliminate the reduction of fluid entering velocity as the cart increases its horizontal velocity.
Thank you for the explanation. So, for now, let's consider it as an assumption for simplifying the problem.
 
tracker890 Source h said:
Homework Statement: It's not apparent why the fluid velocity in the relative non-inertial reference frame is zero.
Relevant Equations: Momentum equation in non-inertial coordinates

Q: Regarding item (4), my understanding aligns with (eq_1), where M is a constant. However, why does ##\left( \frac{\partial}{\partial t}u_{xyz} \right)## in (eq_1) equal 0?

$$
\frac{\partial}{\partial t}\int_{CV}^{}{u_{xyz}}\rho d\forall =\frac{\partial}{\partial t}\left( u_{xyz}\cdot M \right) =M\left( \frac{\partial}{\partial t}u_{xyz} \right) =0\cdots \text{(}eq\_1\text{)}
$$
reference
What you have written here is incorrect. The integral term on the LHS of the governing equation from the example is what represents the solid mass ##M## momentum accumulation rate (when solid mass is contained inside the control volume - that is accelerating)
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top