QFT Peskin Errata: Pauli Vilars Regularization & Ward Takahashi Identity

  • Thread starter Thread starter simic4
  • Start date Start date
  • Tags Tags
    Peskin Qft
simic4
Messages
20
Reaction score
0
Hi,

This is regarding showing, in ch.7, around p.220, that the Pauli Vilars regularization technique is consistent with the ward takahashi identity.

I cannot get the following to work:

I add eq. 7.31 to eq. 7.32 and do not get zero. I get alpha over 4 pi.
(I am left with integral ( 1 - z) * alpha over 2 pi )


we are supposed to show it is zero. i ve checked it and some of the preceding results a few times but cannot get it.

what am i missing. can anyone confirm the problem?

Id really appreciate it! its making me a little nuts.

thanks!

simic
 
Physics news on Phys.org
I shall give it a go for you, it's pretty straightforward, you've probably just made some small cock up somewhere, I do it all the time.

\delta Z_2+\delta F_1(0)=\frac{\alpha}{2\pi}\int^1_0dz\left[-z\log\frac{z\Lambda^2}{(1-z)^2m^2+z\mu^2}+2(2-z)\frac{z(1-z)m^2}{(1-z)^2m^2+z\mu^2}+(1-z)\log\frac{z\Lambda^2}{(1-z)^2m^2+z\mu^2}+(1-z)\frac{(1-4z+z^2)m^2}{(1-z)^2m^2+z\mu^2}\right]
=\frac{\alpha}{2\pi}\int^1_0dz\left[(1-2z)\log\frac{z\Lambda^2}{(1-z)^2m^2+z\mu^2}+\frac{(1-z^2)(1-z)m^2}{(1-z)^2m^2+z\mu^2}\right]

Because, as I'm sure you've already worked out,

(1-z)\frac{(1-4z+z^2)m^2}{(1-z)^2m^2+z\mu^2}+2(2-z)\frac{z(1-z)m^2}{(1-z)^2m^2+z\mu^2}=\frac{(1-z^2)(1-z)m^2}{(1-z)^2m^2+z\mu^2}

Now split the log up

\int^1_0dz(1-2z)\log\frac{z\Lambda^2}{(1-z)^2m^2+z\mu^2}=\int^1_0dz\left[(1-2z)\log\frac{\Lambda^2}{(1-z)^2m^2+z\mu^2}+(1-2z)\log z\right]
=\int^1_0dz\left[(1-z)-\frac{(1-z^2)(1-z)m^2}{(1-z)^2m^2+z\mu^2}+(1-2z)\log z\right]

Plugging that back in gives

\delta Z_2+\delta F_1(0)=\frac{\alpha}{2\pi}\int^1_0dz\left[(1-z)+(1-2z)\log z\right]=0

As

\int^1_0dz(1-z)=-\int^1_0dz(1-2z)\log z=\frac{1}{2}

I presumably did the same as you first time, as I got \alpha/4\pi, I forgot the extra logarithm you're left over with at the end, or you just didn't notice that P&S had split it up in the first place (if you don't split it up, i.e. leave the z in the numerator of the log, the integration by parts they performed for you diverges).
 
Last edited:
Hey thanks a million.

I forgot to split up the log, completely missed it :).

sim.
 
Qutie alright
 
I read Hanbury Brown and Twiss's experiment is using one beam but split into two to test their correlation. It said the traditional correlation test were using two beams........ This confused me, sorry. All the correlation tests I learnt such as Stern-Gerlash are using one beam? (Sorry if I am wrong) I was also told traditional interferometers are concerning about amplitude but Hanbury Brown and Twiss were concerning about intensity? Isn't the square of amplitude is the intensity? Please...
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA

Similar threads

Back
Top