1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

QM - barrier penetration

  1. Dec 19, 2005 #1
    We have a particle of energy E crossing a potential jump at x=0. for x<=0, V=0, for x>=0 V=V1
    We get a wavefunction for x>=0 psi(x) = exp(-iEt/hbar)*exp(-Kx)
    where K = (2m(V1-E))^0.5/hbar
    N.b E<V1 so classically we get no transmission

    we are asked to estimate the penetration distance, and I have found a solution which says let the penetration distance equal 1/K. I can't see physically why we would pick this (it just seems like a random number that means that the wavefunction will decrease by a factor 1/e, but I can't see why this is a sensible estimate).

  2. jcsd
  3. Dec 19, 2005 #2

    Physics Monkey

    User Avatar
    Science Advisor
    Homework Helper

    Well, [tex] 1/\kappa [/tex] is the only relevant length scale in the problem, so the penetration depth has to be proportional to it. The point is that if you were to plot the wavefunction as a function of [tex] \kappa x [/tex], it would look the same no matter what the energy or barrier height were. In other words, if [tex] \kappa x < .1 [/tex] nothing much happens and if [tex] \kappa x > 10 [/tex] the wavefunction is essentially zero. Clearly, [tex] \kappa [/tex] determines the length scale over which the action happens. That being said, you have some freedom in your estimate. Maybe you would like to include a factor of [tex] \ln{2} [/tex] so you get the place where the wavefunction is one half its value at the boundary. In some other problem, it might be nice to include a factor of [tex] \pi [/tex] for convenience, for example. The convention is basically that anything within a power of ten of [tex] \kappa [/tex] is pretty much ok, but this isn't any kind of formal rule and people tend to go with the simple estimate. All you are really doing is identifying the length scale.
    Last edited: Dec 19, 2005
  4. Dec 21, 2005 #3
    Consider what the probability distribution looks like.

    [tex]\Psi = e^{\frac{-iE}{\hbar}t}e^{-\kappa x}[/tex]
    [tex]P=\Psi^* \Psi = e^{-2\kappa x}[/tex]

    Remember that the second part is completely real since V1>E.

    As Physics Monkey said, this is a question of length scale. No matter what threshold of probability you choose (say, .1%), you must scale it must be a constant times 1/kappa because kappa can vary depending on what problem you're doing.

    Let [tex]x=\frac{d}{\kappa}[/tex] be your chosen penetration distance, where d is just a constant.
    [tex]P= e^{-2\kappa x}= e^{-2\kappa \frac{d}{\kappa}} = e^{-2d}[/tex]

    Then choose d according to how close you want the probability to be zero. Since this doesn't depend on kappa, it won't matter what E and V1 are in your problem.
    Last edited: Dec 21, 2005
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?