Quality of an oscillating electron

Click For Summary
SUMMARY

The discussion focuses on the calculation of the quality factor (Q) of an oscillating electron, derived from its energy equations. The initial energy of the oscillator is expressed as Eo = (1/2)kA², leading to the energy dissipated after one cycle as ΔE = Eo(1 - e⁻ᵍ/ν). The final expression for Q is determined to be Q = (mec³)/(2πνKe²), which differs from the expected answer of Q = (mec³)/(4πνKe²) found in the reference material. The discrepancy is attributed to the definitions used for e² and λ, as clarified by referencing Feynman's lectures.

PREREQUISITES
  • Understanding of oscillatory motion and energy equations
  • Familiarity with concepts of quality factor (Q) in physics
  • Knowledge of electromagnetic theory, particularly Coulomb's law
  • Basic calculus for manipulating exponential functions
NEXT STEPS
  • Study Feynman's Lectures on Physics, particularly the section on oscillating systems
  • Explore the derivation of the quality factor in oscillatory systems
  • Learn about the relationship between charge, energy, and electromagnetic radiation
  • Investigate the implications of French's constant in electromagnetic theory
USEFUL FOR

Physicists, electrical engineers, and students studying quantum mechanics or electromagnetic theory will benefit from this discussion, particularly those interested in the behavior of oscillating particles and energy dissipation.

PragmaticYak
Messages
4
Reaction score
1
Homework Statement
This problem is 3-16b) from French, Vibrations and Waves.

According to classical electromagnetic theory an accelerated electron radiates energy at the rate

K = (Ke^2 a^2)/(c^3)

where K = 6 × 10^9 N m^2/C^2, e = electronic charge (C), a = instantaneous acceleration (m/s^2), and c = speed of light (m/s).

b) What is the Q of the oscillator?
Relevant Equations
It was found in part a) that in one cycle, the oscillator radiates

ΔE = (8Ke^2 π^4 ν^3 A^2)/(c^3)

away, where A is the amplitude of the oscillator and ν is its frequency, in Hz. Also,

Q = (ω_o)/(γ)
E(t) = E_o e^(-γt)
ω_o = 2πν
The oscillator's initial energy can be found by considering when all of its energy is potential energy.

Eo = (1/2)kA2 = (1/2)mω2A2 = (1/2)me(2πν)2A2 = 2meπ2ν2A2

where me is the mass of an electron. With this in mind, the energy dissipated after one cycle is given by

ΔE = E(0) - E(1/ν) = Eo - Eoe-γ/ν = Eo(1 - e-γ/ν)

Solving for γ, we see that

ΔE/Eo = 1 - e-γ/ν

1 - ΔE/Eo = e-γ/ν

-γ/ν = ln(1 - ΔE/Eo)

Assuming that ΔE/Eo is very small, we can make the very good approximation

-γ/ν = ln(1 - ΔE/Eo) ≈ -ΔE/Eo

Thus

γ = νΔE/Eo = ν * (8K2e2π4ν3A2)/(c3) * (1)/(2meπ2ν2A2) = (4Ke2π2ν2)/(mec3)

Calculating Q, finally,

Q = ωo/γ = 2πν/γ = 2πν * (mec3)/(4Ke2π2ν2) = (mec3)/(2πνKe2)

However, the answer in the back of the book says

Q = (mec3)/(4πνKe2)

I cannot figure out where the error in my work is.
 
Physics news on Phys.org
I don't see any mistakes in your work. It looks to me like your result for ##Q## agrees with Feynman's result ##Q = \large \frac{3 \lambda mc^2}{4 \pi e^2}## given in formula (32.10) of Vol. I of his lectures.

Here it is important to note that Feynman uses ##e^2## to denote ##q^2/(4\pi \epsilon_0)##, where ##q## is the value of the charge in Coulombs. ##\lambda## is the wavelength of the radiation. French's constant ##K## is equal to ##1/(6 \pi \epsilon_0)## as you can see if you compare French's expression for the radiated power with the first formula given here.

Thus, starting with Feynman's expression for Q and replacing ##e^2## by ##e^2/(4 \pi \epsilon_0)##, replacing ##\lambda## by ##c/\nu##, and replacing ##\epsilon_0## by ##1/(6 \pi K)## you get your result. So, it appears that French's result is half of the correct result.
 
Last edited:
  • Like
Likes   Reactions: PragmaticYak
Thank you!
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
2K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
8
Views
5K
  • · Replies 16 ·
Replies
16
Views
4K