Quantum mechanics and Minimal coupling of Dirac field

mtak0114
Messages
46
Reaction score
0
Hi

I have a simple question:

We know from non-relativistic quantum mechanics that the spin of an electron couples only to the magnetic field, i.e. it processes around the magnetic field. How is this resolved in the relativistic context where it would seem that the spin should couple to both electric and magnetic fields? In particular how is this implied through minimal coupling which seems to be relativistically covariant where as the magnetic field isnt?

thanking you in advanced.
 
Physics news on Phys.org
mtak, You can either start by giving your particle a minimal coupling or else put in an anomalous moment by hand. Either way you wind up considering an interaction term of the form σμνFμν. As you point out, this is relativistically invariant and reduces to S·B in the particle's rest frame. Of course you're also right that this is not S·B in a frame in which the particle is moving. In fact in a moving frame there will be an additional interaction with the E field that looks like S·(v x E). Well you can't quantize the spin along two different directions, so the obvious thing to do is combine these two terms and write them together as S·Beff where Beff is the necessary linear combination of B and v x E. But Beff is also just the B field back in the particle's rest frame, so we just write it that way!
 
Thanks Bill

that makes sense, but is that assuming that F^{\mu\nu} is just the magnetic field {\bf B} in the rest frame otherwise I can't see how \sigma_{\mu\nu}F^{\mu\nu} reduces to such a term in the rest frame. Is it possible to see the converse, that QFT implies that spin does not couple in the rest frame to the electric field?
 
S·E would mean that the particle had an electric dipole moment, in contrast with a magnetic dipole moment. This violates parity conservation. Very small electric dipole moments are predicted by the Standard Model, and larger ones by other theories, but none has ever been observed.
 
So would it be correct to say that the Dirac equation includes effects due to both electric and magnetic dipole moments of the electron? but given that the former are not observed they are suppressed?

When one goes to QED however is such a suppression necessary or does the theory predict that the electric dipole moment is small?

do you have any good references which discuss this issue?
thanks again

Mark
 
mtak, Minimal coupling implies a magnetic dipole moment but no electric dipole moment. If electric dipole moments exist, they don't arise from the Dirac equation, rather from internal loops of parity-violating particles.

In the Standard Model the moments predicted in this way are far smaller than can be detected. Other theories like supersymmetry predict moments near the present detection threshold. For a reference, look for "Neutron electric dipole moment" and "Electron electric dipole moment" on Wikipedia. Almost all of the information you'll find will be experiment-oriented.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!

Similar threads

Back
Top