Quaternions and rotation vector.

AI Thread Summary
To calculate a normalized 3D vector from a quaternion's orientation, the vector part of the quaternion should be extracted and normalized. The vector part consists of the imaginary components associated with i, j, and k. A quaternion can be expressed in the form q = q0 + q1*i + q2*j + q3*k, where q0 is the scalar part and (q1, q2, q3) represents the 3-vector part. It's important to note that a quaternion is considered a 4-vector within a vector space. Understanding these components is essential for accurate quaternion manipulation in 3D rotations.
pjhphysics
Messages
16
Reaction score
0
Hi,
I'm trying to calculate a normalized 3d vector representing the quaternion's orientation. Can anyone give me a hand?
Thanks!
 
Mathematics news on Phys.org
It's easy. Take the vector part of the quaternion and then normalize it.
 
What constitutes the vector part of the quaternion?
 
He means use the imaginary elements associated with i, j, and k of course.

BTW, technically a quaternion is itself a vector, since it's a member of a vector space.
 
A quaternion can be expressed as

q = q0 + q1*i + q2*j + q3*k

It's a 4-vector, (q0,q1,q2,q3) that can be decomposed into a scalar part, q0, and a 3-vector part (q1,q2,q3).
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top