My question deals not with the Lorentz Tranformation itself, but the matrix representation of it:(adsbygoogle = window.adsbygoogle || []).push({});

I see readily how the space-time 4-vector: [tex]x^{\mu}=\left( c \ast t, x, y, z\right)[/tex] transforms approptiately so that [tex]x^{\acute{\mu}}=\Lambda_{v}^{\acute{\mu}} \ast x^{\mu}=\left( \gamma \ast \left( c \ast t - \beta \ast x\right), \gamma \ast \left( x- \beta \ast c \ast t \right), y, z\right)[/tex].

I also see how a properly aligned Energy-Momentum 4-vector [tex]p^{\mu}=\left( \frac{E}{c}, \left|\vec{p}\right|, 0, 0\right)[/tex] transforms appropriately so that [tex]p^{\acute{\mu}}=\Lambda_{v}^{\acute{\mu}} \ast p^{\mu}=\left( \gamma \ast \left(\frac{E}{c} - \beta \ast \left|\vec{p}\right| \right), \gamma \ast \left( \left|\vec{p}\right| - \beta \ast \frac{E}{c} \right), 0, 0 \right)[/tex].

It is rather simple to use the transformed position four-vector to get the inverse of the velocity addition formula: [tex] \acute{v}=\frac{v-v_s}{1-\left(\frac{v_s \ast v}{c^2}\right)}[/tex]

...and its not too much harder to use [tex]v = \frac{\left|\vec{p}\right| \ast c^2}{E} [/tex], and the result of the Energy-momentum 4-vector, to arrive at the same formula.

However, if I use an appropriately aligned the velocity 4-vector, [tex]\zeta^{\mu}=\left(\gamma \ast c, \gamma \ast \left|\vec{v}\right|, 0, 0 \right)[/tex], I am not able to get the correct formulas. I am not even able to get the result that the speed of light is constant.

I don't know if there is some algabraic trickery needed, or if there is something more fundamental I am missing (I suspect that I am missing something fundamental).

So I ask if someone can do one of the following:

- Derive the velocity addition formula (or its inverse) by using the velocity 4-vector and the matrix reprecentation of the Lorentz Transformation
- Explain why it is misguided to attempt this.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Question about applying the Lorentz Transformation to velocity 4-vectors

Loading...

Similar Threads for Question applying Lorentz |
---|

I Question about time and space |

I Relativistic addition question |

B Theoretical Question On The Twins Paradox and Heart Rate |

I Some geometry questions re Schwarzschild metric |

B Causality Question |

**Physics Forums | Science Articles, Homework Help, Discussion**