Question about the Borwein fast algorithm for certain values of Gamma

  • Thread starter Thread starter mesa
  • Start date Start date
  • Tags Tags
    Algorithm Gamma
mesa
Gold Member
Messages
694
Reaction score
36
I am reading through Borwein's paper, "Fast evaluation of the gamma function for small rational fractions using complete elliptic integrals of the first kind" and have a question.

If we look at his algorithm's we see they are of this general form:

Gamma(1/2)=2^(-1/4)AG[1]{2^(-1/2)∑[1]}^(-1/2)

I have been able to run through everything up until the curly brackets, {}. Is this a multiplier? Or is it something else entirely?
 
Mathematics news on Phys.org
I'm sorry you are not generating any responses at the moment. Is there any additional information you can share with us? Any new findings?
 
Greg Bernhardt said:
I'm sorry you are not generating any responses at the moment. Is there any additional information you can share with us? Any new findings?

It's the first time this has happened using PF so can't really complain.

Dr. Borwein figured out a way to use the arithmetic geometric mean (which he refers to simply as AG method) to take the difference of the squares of an and bn in a summation to get some pretty astounding decimal approximations for certain values of the gamma function.

The primary issue is it seems to be extremely limited in the number of values that can be used to calculate gammas and with the exception of some extraordinary mathematical gymnastics the number of values that can be used is countable.

Regardless, it is a wonderful piece of work!
 
mesa said:
I am reading through Borwein's paper, "Fast evaluation of the gamma function for small rational fractions using complete elliptic integrals of the first kind" and have a question.

If we look at his algorithm's we see they are of this general form:

Gamma(1/2)=2^(-1/4)AG[1]{2^(-1/2)∑[1]}^(-1/2)

I have been able to run through everything up until the curly brackets, {}. Is this a multiplier? Or is it something else entirely?
I'm not clear on what "\Sigma[1]" or "AG[1]" mean. But ignoring that, because the curly brackets are to the "-1/2" power, this is
\Gamma(1/2)= \frac{1}{16}\frac{AG[1]}{\sqrt{\frac{1}{\sqrt{2}}\Sigma[1]}}
 
HallsofIvy said:
I'm not clear on what "\Sigma[1]" or "AG[1]" mean. But ignoring that, because the curly brackets are to the "-1/2" power, this is
\Gamma(1/2)= \frac{1}{16}\frac{AG[1]}{\sqrt{\frac{1}{\sqrt{2}}\Sigma[1]}}

As far as 'AG' Borwein uses it as short hand for his summation that takes the difference of the squares of an and bn from the arithmetic geometric mean operation inside a summation that is taken away from a value that is dependent on the input for gamma.

The general operation of the identity is based on calculated variable 'N' tables provided by the author to compute certain values of gamma we can 'look up' to insert to get the components of AG[N] and ∑[N]. I did not look into exactly how the author calculated these tables, the process can be daunting and does not yield much value (if someone thinks otherwise please chime in!).

Overall the scope of his identity seems very limited but for the values it can calculate the decimal approximation for accuracy is astounding and grows radically with each step.

On another note, I figured the same for the curly brackets just representing () or [], I just haven't seen them used before, is this a common thing?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top