Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Question about the Heisenberg Uncertainty Principle

  1. Feb 27, 2007 #1
    1. The problem statement, all variables and given/known data

    Suppose the minimum uncertainty in the position of a particle is equal to its de Broglie wavelength. If the particle has an average speed of 4.7 105 m/s, what is the minimum uncertainty in its speed?

    2. Relevant equations

    lambda=h/p & (Py)(Y) is greater than or equal to h/4pi

    3. The attempt at a solution

    I'm not really sure where to start
  2. jcsd
  3. Sep 14, 2008 #2
    Let LAMDA = De Broglie Wavelength
    DELTAp = uncertainty in linear momentum
    DELTAy = uncertainty in position
    DELTAv = uncertainty in speed

    (Question gives:) DELTAy = LAMDA
    Since DELTAp*DELTAy = h/(4pi), then DELTAp*LAMDA = h/(4pi)
    Thus, LAMDA = h/(4pi*DELTAp)

    Also, LAMDA = h/p

    Combine the 2: h/(4pi*DELTAp) = h/p
    So: 4pi*DELTAp = p

    p = mv, DELTAp = m*DELTAv
    4pi*m*DELTAv = mv
    4pi*DELTAv = v

    We want DELTAv, so:
    DELTAv = v/(4pi)

  4. Nov 17, 2008 #3
    oh man, delta p=m*delta v was the whole key to figuring this out that I NEVER would have thought of. Thank you so much for this detailed solution!! You are the master :)
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook