vanhees71 said:
You have
$$(\vec{\pi} \times \vec{\pi})_k=\epsilon_{ijk} \pi_i \pi_j=\frac{1}{2} \epsilon_{ijk} (\pi_i \pi_j-\pi_j \pi_i)=\frac{1}{2} \epsilon_{ijk}[\pi_i,\pi_j],$$
because ##\epsilon_{ijk}=-\epsilon_{jik}##.
Hmmm, so this is valid for any operator, right? Now I got it. I did in this way before, but I thought that was wrong, because it wasn't working with the ##\vec{L}## operator. But I forgot an extra ##\epsilon_{ijk}## that appears in ##\left[L_{i},L_{j}\right]##. So this gives
$$ {\displaystyle \left(\vec{L}\times\vec{L}\right)_{k}=\sum_{i,j}\frac{\epsilon_{ijk}}{2}\underbrace{\left[L_{i},L_{j}\right]}_{{\displaystyle i\hbar\sum_{k}\epsilon_{ijk}L_{k}}}=\frac{i\hbar}{2}\left(\sum_{i,j}\epsilon_{ijk}\epsilon_{ij1}L_{1}+\sum_{i,j}\epsilon_{ijk}\epsilon_{ij2}L_{2}+\sum_{i,j}\epsilon_{ijk}\epsilon_{ij3}L_{3}\right)} $$
$$ {\displaystyle =\frac{i\hbar}{2}\left[\left(\epsilon_{23k}\epsilon_{231}+\epsilon_{32k}\epsilon_{321}\right)L_{1}+\left(\epsilon_{13k}\epsilon_{132}+\epsilon_{31k}\epsilon_{312}\right)L_{2}+\left(\epsilon_{12k}\epsilon_{123}+\epsilon_{21k}\epsilon_{213}\right)L_{3}\right]} $$
$$ {\displaystyle =\frac{i\hbar}{2}\left[\left(\epsilon_{23k}-\epsilon_{32k}\right)L_{1}+\left(\epsilon_{31k}-\epsilon_{13k}\right)L_{2}+\left(\epsilon_{12k}-\epsilon_{21k}\right)L_{3}\right]} $$
$$ {\displaystyle =\frac{i\hbar}{2}\left[2\epsilon_{23k}L_{1}+2\epsilon_{31k}L_{2}+2\epsilon_{12k}L_{3}\right]} $$
$$ {\displaystyle =i\hbar\epsilon_{k23}L_{1}+i\hbar\epsilon_{1k3}L_{2}+i\hbar\epsilon_{12k}L_{3}} $$
$$ {\displaystyle =i\hbar L_{k}}, $$
which is the correct answer. It makes sense to me now. Thank you very much for your help :)