I Question about the Pauli equation

  • I
  • Thread starter Thread starter Airton Rampim
  • Start date Start date
  • Tags Tags
    Pauli
Airton Rampim
Messages
6
Reaction score
1
I have a question about this note: https://ocw.mit.edu/courses/physics...i-spring-2018/lecture-notes/MIT8_06S18ch2.pdf
I don't understand the expression (2.2.15). The complete relation would be

$$ \pi_i \pi_j = \frac{1}{2}\left(\left[\pi_i, \pi_j\right] + \left\{\pi_i, \pi_j\right\}\right), $$
where
$$ \vec{\pi} = \vec{p} - \frac{q}{c}\vec{A} $$
in gaussian unit. How can I prove that {πi, πj} = 0?
 
Physics news on Phys.org
In (2.2.15) you don't need the anticommutator, because the ##\epsilon_{ijk}## cancels this contribution identically. The commutator is most easily calculated in the position representation, where ##\hat{\vec{p}}=-\mathrm{i} \hbar \vec{\nabla}## or ##\hat{p}_i=-\mathrm{i} \partial_i##.
 
  • Like
Likes Airton Rampim
vanhees71 said:
In (2.2.15) you don't need the anticommutator, because the ##\epsilon_{ijk}## cancels this contribution identically. The commutator is most easily calculated in the position representation, where ##\hat{\vec{p}}=-\mathrm{i} \hbar \vec{\nabla}## or ##\hat{p}_i=-\mathrm{i} \partial_i##.

Sorry, but I can't see how the Levi-Civita tensor cancels the anticommutator. I calculated the commutator using the position representation, as you mentioned. What I can't figure out is how I relate the commutator with the vector product ##\vec{\pi}\times\vec{\pi}##.
 
You have
$$(\vec{\pi} \times \vec{\pi})_k=\epsilon_{ijk} \pi_i \pi_j=\frac{1}{2} \epsilon_{ijk} (\pi_i \pi_j-\pi_j \pi_i)=\frac{1}{2} \epsilon_{ijk}[\pi_i,\pi_j],$$
because ##\epsilon_{ijk}=-\epsilon_{jik}##.
 
  • Like
Likes Airton Rampim
vanhees71 said:
You have
$$(\vec{\pi} \times \vec{\pi})_k=\epsilon_{ijk} \pi_i \pi_j=\frac{1}{2} \epsilon_{ijk} (\pi_i \pi_j-\pi_j \pi_i)=\frac{1}{2} \epsilon_{ijk}[\pi_i,\pi_j],$$
because ##\epsilon_{ijk}=-\epsilon_{jik}##.

Hmmm, so this is valid for any operator, right? Now I got it. I did in this way before, but I thought that was wrong, because it wasn't working with the ##\vec{L}## operator. But I forgot an extra ##\epsilon_{ijk}## that appears in ##\left[L_{i},L_{j}\right]##. So this gives

$$ {\displaystyle \left(\vec{L}\times\vec{L}\right)_{k}=\sum_{i,j}\frac{\epsilon_{ijk}}{2}\underbrace{\left[L_{i},L_{j}\right]}_{{\displaystyle i\hbar\sum_{k}\epsilon_{ijk}L_{k}}}=\frac{i\hbar}{2}\left(\sum_{i,j}\epsilon_{ijk}\epsilon_{ij1}L_{1}+\sum_{i,j}\epsilon_{ijk}\epsilon_{ij2}L_{2}+\sum_{i,j}\epsilon_{ijk}\epsilon_{ij3}L_{3}\right)} $$

$$ {\displaystyle =\frac{i\hbar}{2}\left[\left(\epsilon_{23k}\epsilon_{231}+\epsilon_{32k}\epsilon_{321}\right)L_{1}+\left(\epsilon_{13k}\epsilon_{132}+\epsilon_{31k}\epsilon_{312}\right)L_{2}+\left(\epsilon_{12k}\epsilon_{123}+\epsilon_{21k}\epsilon_{213}\right)L_{3}\right]} $$

$$ {\displaystyle =\frac{i\hbar}{2}\left[\left(\epsilon_{23k}-\epsilon_{32k}\right)L_{1}+\left(\epsilon_{31k}-\epsilon_{13k}\right)L_{2}+\left(\epsilon_{12k}-\epsilon_{21k}\right)L_{3}\right]} $$

$$ {\displaystyle =\frac{i\hbar}{2}\left[2\epsilon_{23k}L_{1}+2\epsilon_{31k}L_{2}+2\epsilon_{12k}L_{3}\right]} $$

$$ {\displaystyle =i\hbar\epsilon_{k23}L_{1}+i\hbar\epsilon_{1k3}L_{2}+i\hbar\epsilon_{12k}L_{3}} $$

$$ {\displaystyle =i\hbar L_{k}}, $$

which is the correct answer. It makes sense to me now. Thank you very much for your help :)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top