1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

I Question inspired by reviewing conic sections

  1. Mar 9, 2017 #1
    Recently, in my calculus two class, we began going over conic sections. After reviewing the definitions of ellipses and hyperbolas - For two given points, the foci, an ellipse is the locus of points such that the sum of/difference between the distance to each focus is constant, respectively - I couldn't help but become curious: does a shape and/or equation for a set of points such that "the product or quotient of the distance to each focus is constant" instead of just the sum or difference? I posed this question to my math instructor too, but he didn't know. (I hope that this is the right section to post this in. It seemed most likely, but I couldn't tell with any certainty which sub-forum to post this on)
     
  2. jcsd
  3. Mar 9, 2017 #2

    fresh_42

    Staff: Mentor

    Can you explain precisely what you mean? If I consider two points ##A,B## at a distance ##a,b## form a focus ##F##, i.e. ##a=|AF| , b=|BF|## and look out for a third point ##C## with distance ##c=|CF|## from the focus, such that ##ab=ac=bc##, then I get ##a=b=c## and end up with a circle or the set ##\{A,B,F\}##.
     
  4. Mar 9, 2017 #3
    First of all, ellipses and hyperbolas both have two foci, not one focus. The two foci are the two points in the definitions I provided, not two other points. So, if the two foci are A and B, and the distances between those foci and any given point P are |AP| and |BP|:
    An ellipse (represented by the equation (x2/a2) + (y2/b2) = 1, or (y2/a2) + (x2/b2) = 1 with a>b) consists of all points P such that |AP| + |BP| is constant and a hyperbola (represented by the equation (x2/a2) - (y2/b2) = 1, or (y2/a2) - (x2/b2) = 1) consists of all points P such that the absolute value of |AP| - |BP| is constant. What I'm asking is if there are any shapes and equations for the sets of points such that |AP| * |BP| is constant, |AP| / |BP| is constant, and/or |BP| / |AP| is constant.
     
  5. Mar 10, 2017 #4

    jbriggs444

    User Avatar
    Science Advisor

    Are there equations? Of course. ##k = |AP| \cdot |BP|## is an equation. It could be written as ##k = \sqrt{(x-x_A)^2 + (y-y_A)^2} \cdot \sqrt{(x-x_B)^2 + (y-y_B)^2}##

    Are you, perhaps, asking whether that equation could be simplified into some other form such as a polynomial equation in x and y using some constants which depend on k, ##\vec{A}## and ##\vec{B}##? It looks like squaring both sides would be a good start. I've not worked it out, but it looks like that particular result would be a degree 4 polynomial equation in x and y.

    Are there shapes? Of course. You could plot the solution set for the above equation. I believe the solution set (for k>0, and ##\vec{A}## different from ##\vec{B}##) will always contain at least one and possibly two closed curves. Are you, perhaps, asking whether those curves are shapes which are well-known by other names? Beats me.
     
    Last edited: Mar 10, 2017
  6. Mar 10, 2017 #5
    :-pYeah, I suppose it was kind of a silly way for me to phrase my questions. Though I commend you for not only answering the questions I posed but also addressing and answering the questions I meant when I myself didn't fully realize that those alternate questions were far closer to expressing what I was actually curious about. Thank you
     
  7. Mar 10, 2017 #6

    FactChecker

    User Avatar
    Science Advisor
    Gold Member

    If you make a contour plot of ##z = \sqrt{(x-x_A)^2 + (y-y_A)^2} \cdot \sqrt{(x-x_B)^2 + (y-y_B)^2}##, you should be able to see what the level curves look like.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted



Similar Discussions: Question inspired by reviewing conic sections
  1. Conic Sections (Replies: 5)

  2. Conic sections (Replies: 9)

  3. Conic sections (Replies: 4)

Loading...