yungman
- 5,741
- 294
This is in page 346 of Griffiths "Introduction to Electrodynamics". This is regarding to work done by electromagnetic forces dW acting on charges in the interval dt.
dW = \vec F \cdot d \vec l =q( \vec E + \vec v X \vec B) \cdot d \vec l = q( \vec E + \vec v X \vec B) \cdot \vec v d t \;\;\hbox { Where }\; \vec v \;\hbox { is velocity, and }\; d \vec l = \vec v dt
\vec v X \vec B \;\hbox { is perpendicular to }\; \vec v \;\;\Rightarrow \; (\vec v X \vec B) \cdot \vec v \;=\; 0.
\hbox { Therefore }\; dW = \vec F \cdot d \vec l = q \vec E \cdot \vec v dt = \vec E \cdot \vec J d\tau d t
\hbox { Where }\; q=\rho_v d\tau, \;\hbox { and } \; \vec J = \rho_v \vec v
Here is where I have problem. From above:
\frac { d W}{dt} = (\vec E \cdot \vec J) d\tau
But the book gave:
\frac { d W}{dt} = \int_v (\vec E \cdot \vec J) d\tau
What is wrong with my derivation?
dW = \vec F \cdot d \vec l =q( \vec E + \vec v X \vec B) \cdot d \vec l = q( \vec E + \vec v X \vec B) \cdot \vec v d t \;\;\hbox { Where }\; \vec v \;\hbox { is velocity, and }\; d \vec l = \vec v dt
\vec v X \vec B \;\hbox { is perpendicular to }\; \vec v \;\;\Rightarrow \; (\vec v X \vec B) \cdot \vec v \;=\; 0.
\hbox { Therefore }\; dW = \vec F \cdot d \vec l = q \vec E \cdot \vec v dt = \vec E \cdot \vec J d\tau d t
\hbox { Where }\; q=\rho_v d\tau, \;\hbox { and } \; \vec J = \rho_v \vec v
Here is where I have problem. From above:
\frac { d W}{dt} = (\vec E \cdot \vec J) d\tau
But the book gave:
\frac { d W}{dt} = \int_v (\vec E \cdot \vec J) d\tau
What is wrong with my derivation?