In the original circular orbit I have
##g_0 = \frac{{G \cdot M}}{{r_0^2 }}##
##\dot \varphi _0^2 = \frac{{G \cdot M}}{{r_0^3 }} = \frac{{g_0 }}{{r_0 }}##
##\dot r_0 = 0##
That means for the orbital energy of the thrusted orbit
##\frac{E}{m} = \frac{1}{2} \cdot \left( {\dot r^2 + \frac{{r_0^4 \cdot \dot \varphi _0^2 }}{{r^2 }}} \right) - \frac{{G \cdot M}}{r} - a \cdot r = \frac{1}{2} \cdot \left( {\dot r^2 + \frac{{g_0 \cdot r_0^3 }}{{r^2 }}} \right) - \frac{{g_0 \cdot r_0^2 }}{r} - a \cdot r##
resulting in the initial energy
##\frac{{E_0 }}{m} = - \left( {\frac{1}{2} \cdot g_0 + a} \right) \cdot r_0##
In apogee the radial velocity is zero
##\dot r_a = 0##
Thus, orbital energy in apogee is
##\frac{{E_a }}{m} = \frac{1}{2} \cdot \frac{{g_0 \cdot r_0^3 }}{{r_a^2 }} - \frac{{g_0 \cdot r_0^2 }}{{r_a }} - a \cdot r_a##
I am looking for the apogee with the maximum energy. That means
##\frac{d}{{dr_a }}\frac{{E_a }}{m} = - \frac{{g_0 \cdot r_0^3 }}{{r_a^3 }} + \frac{{g_0 \cdot r_0^2 }}{{r_a^2 }} - a = 0##
Now I would need to solve this cubic equation (
@jbriggs444 already corrected me in this regard) for ##r_a##, calculate the corresponding energy and than solve ##a## for equal initial energy. But fortunately we already have an idea for ##a## that just needs to be checked:
##a = \frac{{g_0 }}{8}##
results in
##r_{\max } = 2 \cdot r_0##
and
##\frac{{E_{\max } }}{m} = \frac{{E_0 }}{m} = - \frac{5}{8}g_0 \cdot r_a ##
That means the empiric estimates for ##a## and ##r_{max}## are correct.