yungman
- 5,741
- 294
I understand the surface of the sphere is 4\pi sr. where the area of one sr is r^2.
My question is why d\Omega = sin \theta \;d \theta \;d\phi? Can anyone show me how to derive this.
Is it because surface area dS = (Rd\theta)(R\; sin\;\theta\;d\phi)\;\hbox { so if }\; \Omega = \frac S {R^2} \;\Rightarrow \; d\Omega = \frac {d\;S}{R^2}= sin \theta d\theta d \phi
My question is why d\Omega = sin \theta \;d \theta \;d\phi? Can anyone show me how to derive this.
Is it because surface area dS = (Rd\theta)(R\; sin\;\theta\;d\phi)\;\hbox { so if }\; \Omega = \frac S {R^2} \;\Rightarrow \; d\Omega = \frac {d\;S}{R^2}= sin \theta d\theta d \phi
Last edited: