I have quite some difficulties to understand, so my answer might miss the point.
Stephen Tashi said:
So we have a mapping between solutions by radicals and some field. Is it a 1-to-1 mapping? [Edit: It is a many-to-1 mapping, so my question should be whether the mapping is "onto"]
A solution "by radicals" for a root r of ## x^5 + ax + b ## could be written in the form ##r = f(a.b)## where ##f(a,b)## can be written as some explicit formula involving only the constants 1, 0, a, b (which are the coefficients of the equation ##1x^5 + 0x^4 + 0x^3 + 0x^2 + ax + b = 0 ##) and the operations of addition, subtraction, multiplication, division and taking positive roots.
The set of all possible expressions of that form "generates" a field of numbers that contains ##0,1,a,b##. If the expression works then the field also contains ##r##. Does every formula work for some equation?
We are talking about finite algebraic extensions, and we may further consider simple ones, too: Every time we need a root to express a number, we can extend our field by this root. (By the way: Is the English term for it basis field, base field or ground field?) On the other hand our finite extension can be seen as successively adjoining root by root. So all comes down to steps of (normal) field extensions ##\mathbb{F} \subseteq \mathbb{F}(r)## where ##r=\sqrt[n]{c} \, , \, p(r) = 0## for a polynomial ##p(x)=c-x^n \in \mathbb{F}[x]##.
Then all elements ##s \in \mathbb{F}(r)## can be written as ##s=\frac{a_0+a_1r+\ldots+a_{k-1}r^{k-1}+r^k}{b_0+b_1r+\ldots+b_{l-1}r^{l-1}+r^l}\,##.
Now we proceed by the next radical term (root) we need - as long as it can be done.
Which brings up the question of what it means to say that "an" equation is or isn't solvable by radicals. For example does "the" equation ##x^5 + ax + b = 0## denote a set of equations whose elements are defined by specifying particular values of ##a## and ##b## ? If I say that an algorithm ##A## finds a root of "the" equation ##x^5 + ax + b = 0## then do I mean that a single algorithm ##A## finds a root of all equations of that form? (i.e. ##A## is a single algorithm that produces different answers due to the different input values for ##a,b##). Or do I mean that for each different equation there is a possibly different algorithm that finds a root of the equation and that all these different algorithms share some common property such as "using radicals" ?
In my understanding it all depends on the one single polynomial equation which we want to solve. It can be "solved by radicals" if and only if all, say complex numbers ##z## (##char \,\mathbb{F}=0## should do here) for which ##f(z)=0 \, , \, f(x) \in \mathbb{F}[x]## can be written in terms of elements of ##\mathbb{F}(r_1,\ldots,r_m) \supseteq \mathbb{F}(r_1,\ldots,r_{m-1}) \supseteq \ldots \supseteq \mathbb{F}(r_1) \supseteq \mathbb{F}## and all extensions are of the form described above. Thus we have all possible expressions with radicals that are needed to write ##z##.
And back to your first question: Of course does ##\mathbb{F}(r_1,\ldots,r_m)## contain more possible expressions than the one needed for ##z## (and its conjugates), but this doesn't matter - we are not after uniqueness.
To summarize: An expression by radicals needs a tower of field extensions as described, and on the other hand ##z \in \mathbb{F}(r_1,\ldots,r_m)## allows us the desired expression.
Now the opening question, how to disprove solvability by radicals is equivalent to the non-existence of such a tower of fields, which again corresponds to the non-exitence of a normal series of automorphism groups, which means the overall automorphism group ##Aut_\mathbb{F}(\mathbb{F}(r_1,\ldots,r_m))## isn't solvable. Therefore one possible way to disprove solvability by radicals (for one given polynomial equation) is to compute this (finite) group and then to prove it isn't a solvable group.
That only leaves the question where to take the ##r_i## from, if it's not possible to "solve" the equation. But here we know that all roots exist in the algebraic closure, e.g. ##\mathbb{C},## and we can work with symbols representing these roots (meant as solution, not as a radical ##\sqrt[*]{*}##), for which our given polynomial equation holds. Here other polynomials than ##x^n=c## may occur.
In the general case, one has to show polynomial equations such that their automorphism group actually is ##\mathcal{Sym}(n)## (the maximal possible group here) which aren't solvable for ##n \geq 5##.
As I said, I'm not sure whether this is an appropriate answer or we're talking from totally different points of view.