High School Question regarding using the expression $dE_{int}$=nC_vdT$

Click For Summary
The first law of thermodynamics indicates that the change in internal energy is equal to the heat exchanged and work done on or by the system, expressed as dE=Q-W. In an adiabatic process, where Q=0, this simplifies to dE=-W. The discussion clarifies that specific heat capacity at constant volume, C_v, can be applied in this context, even when volume changes occur, as internal energy E depends solely on temperature for an ideal gas. Therefore, the relationship dE=nC_vdT can be used, leading to the conclusion that for an adiabatic process, dE=nC_vdT=-dW. Understanding these principles helps resolve common confusions regarding the application of specific heat in thermodynamic processes.
Harikesh_33
Messages
24
Reaction score
4
The first law of Thermodynamics states that the change in Internal energy is equal to the sum of Heat gained or lost by the system and work done by the system or on the system .

$dE=Q-W$...(1).

In an Adiabatic process ,Q=0 .

Therefore $dE=-W$ .

Now (https://phys.libretexts.org/Bookshelves/University_Physics/Book:_University_Physics_(OpenStax)/Book:_University_Physics_II_-_Thermodynamics_Electricity_and_Magnetism_(OpenStax)/03:_The_First_Law_of_Thermodynamics/3.07:_Adiabatic_Processes_for_an_Ideal_Gas)

here specific heat capacity at Constant volume is used instead of internal energy (ie) $dE=nC_vdT$ .

How can this specific heat be used here isn't the Volume changing (through Work done ?) .

How can $nC_vdT$=-dW$ be used ?
 
Science news on Phys.org
@Harikesh_33, it's worth noting that to make Latex render correctly here, you enclose the code between a pair of double hash-signs (##\text {##Your Latex code here##}##).

For example, doing this for nC_vT=-dW gives ##nC_vT=-dW##.

Or you can similarly use a pair of double dollar-signs to render the code on its own line. For example $$nC_vT=-dW$$Use the preview-toggle (top right on edit-toolbar) to check before posting.
 
In thermodynamics, the correct equation to use for ##C_v## is in terms of the internal energy E rather than heat Q: $$C_v=\frac{1}{n}\left(\frac{\partial E}{\partial T}\right)_V$$In the case of an ideal gas, E is a function only of T, and not V. So, for an ideal gas, we can write that $$dE=nC_vdT\tag{ideal gas}$$So, for an adiabatic reversible process of an ideal gas, we have $$dE=nC_vdT=-dW$$It's as simple as that.
 
  • Like
Likes Lord Jestocost and vanhees71
Thread 'Can somebody explain this: Planck's Law in action'
Plotted is the Irradiance over Wavelength. Please check for logarithmic scaling. As you can see, there are 4 curves. Blue AM 0 as measured yellow Planck for 5777 K green Planck for, 5777 K after free space expansion red Planck for 1.000.000 K To me the idea of a gamma-Ray-source on earth, below the magnetic field, which protects life on earth from solar radiation, in an intensity, which is way way way outer hand, makes no sense to me. If they really get these high temperatures realized in...

Similar threads

  • · Replies 22 ·
Replies
22
Views
5K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 20 ·
Replies
20
Views
3K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
27K