Questions about Legendre Equation

  • Thread starter Thread starter AlonsoMcLaren
  • Start date Start date
  • Tags Tags
    Legendre
AlonsoMcLaren
Messages
89
Reaction score
2
1. I understand that the x in Legendre Equation (1-x^2)y''-2xy'+l(l+1)y=0 is often related to θ in spherical coordinates. We want the latter equation to have a solution at θ=0 and θ=pi. Therefore, we require that Legendre Equation has a solution at x=±1

And it is claimed that "we require the equation to have a polynomial solution, and so l must be an integer. Furthermore, we also require the coefficient c2 of the function Ql(x) (Legendre's function of the second kind) to be zero" But this assumes that at x=±1 the solution of Legendre Equation MUST be found by a power series. Having a solution at x=±1 is not the same as having a power series solution at x=±1.

2. How to solve Legendre Equation with |x|>1?
 
Physics news on Phys.org
The "Legendre polynomials" are eigenfunctions for the Legendre operator. That means that any solution can be written as a (possibly infinite) sum of Legendre polynomials.
 
Thread 'Direction Fields and Isoclines'
I sketched the isoclines for $$ m=-1,0,1,2 $$. Since both $$ \frac{dy}{dx} $$ and $$ D_{y} \frac{dy}{dx} $$ are continuous on the square region R defined by $$ -4\leq x \leq 4, -4 \leq y \leq 4 $$ the existence and uniqueness theorem guarantees that if we pick a point in the interior that lies on an isocline there will be a unique differentiable function (solution) passing through that point. I understand that a solution exists but I unsure how to actually sketch it. For example, consider a...

Similar threads

Back
Top