Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Quick expression on geodesic equation

  1. Apr 7, 2015 #1
    Taken from Hobson's book:


    How did they get this form?

    [tex] \dot u^{\mu} = - \Gamma_{v\sigma}^\mu u^v u^\sigma [/tex]
    [tex] \dot u^{\mu} g_{\mu \beta} \delta_\mu ^\beta = - g_{\mu \beta} \delta_\mu ^\beta \Gamma_{v\sigma}^\mu u^v u^\sigma [/tex]
    [tex] \dot u_{\mu} = - \frac{1}{2} g_{\mu \beta} \delta_\mu ^\beta g^{\mu \gamma} \left(\partial_v g_{\sigma \gamma} + \partial_\sigma g_{v\gamma} - \partial_\gamma g_{v\sigma} \right) [/tex]
    [tex] = - \frac{1}{2} \delta_\mu ^\beta \delta_\beta ^\gamma \left(\partial_v g_{\sigma \gamma} + \partial_\sigma g_{v\gamma} - \partial_\gamma g_{v\sigma} \right) [/tex]
    [tex] = -\frac{1}{2} \left( \partial_v g_{\sigma \mu} + \partial_\sigma g_{v\mu} - \partial_\mu g_{v\sigma} \right) [/tex]

    Why are the first two terms zero?
  2. jcsd
  3. Apr 7, 2015 #2


    User Avatar
    Staff Emeritus
    Science Advisor

    Since [itex]u_\mu = g_{\mu \nu} u^\nu[/itex], then
    [itex]\dot{u}_\mu = \dot{g}_{\mu \nu} u^\nu + g_{\mu \nu} \dot{u}^\nu[/itex]

    Using the chain rule, or whatever the rule is, [itex]\dot{g}_{\mu \nu} = u^\sigma \partial_\sigma g_{\mu \nu}[/itex]. So we have:

    [itex]\dot{u}_\mu = u^\sigma u^\nu \partial_\sigma g_{\mu \nu} + g_{\mu \nu} \dot{u}^\nu[/itex]

    Using [itex]\dot{u}^\nu = - \Gamma^\nu_{\sigma \lambda} u^\sigma u^\lambda[/itex], we have:

    [itex]\dot{u}_\mu = u^\sigma u^\nu \partial_\sigma g_{\mu \nu} - g_{\mu \nu} \Gamma^\nu_{\sigma \lambda} u^\sigma u^\lambda[/itex]

    Finally, using [itex] g_{\mu \nu} \Gamma^\nu_{\sigma \lambda} = \Gamma_{\mu \sigma \lambda} = \frac{1}{2}(\partial_\sigma g_{\mu \lambda} + \partial_\lambda g_{\mu \sigma} - \partial_\mu g_{\sigma \lambda})[/itex], we can write this as:

    [itex]\dot{u}_\mu = u^\sigma u^\nu \partial_\sigma g_{\mu \nu} - \frac{1}{2} u^\sigma u^\lambda (\partial_\sigma g_{\mu \lambda} + \partial_\lambda g_{\mu \sigma} - \partial_\mu g_{\sigma \lambda}) [/itex]

    After some cancellations, you get their result.
  4. Apr 7, 2015 #3
    Brilliant, thank you!
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Similar Discussions: Quick expression on geodesic equation
  1. The geodesic equation (Replies: 5)

  2. Geodesic Equation (Replies: 1)