Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

R c h o

  1. Feb 9, 2010 #1

    arivero

    User Avatar
    Gold Member

    http://arxiv.org/abs/1002.1497 :tongue: :rofl: :rofl: I just mentioned RCHO in other thread, and an article appears. Very predictive, I am :-DDD


    I haven't read it. I will not, most probably, in a few days. But I feel it could be place for a thread on the topic of relationship between unification and normed, division, algebras.

    You may know, or perhaps not, that it is actually a *mainstream* topic. Evans did a proof of the relationship between supersymmetry and this kind of algebras. Of course it is also a "lost cause". But perhaps it could be regained. Also the vector-"diagonal" generalisation of Evans argument builds the full BraneScan, which can be also told to be mainstream. I told of the brane scan here, https://www.physicsforums.com/showthread.php?t=181194

    BTW, the guy is at Perimeter, with Sorkin.
     
    Last edited: Feb 10, 2010
  2. jcsd
  3. Feb 9, 2010 #2

    arivero

    User Avatar
    Gold Member

    OK I read it. Well, the references :DDDD Hey, I bet it is the first Perimeter preprint actually quoting F.D.T. Smith in the references, is it? No reference for my boss, althought :(

    I am going to put some references and then I get the excuse to quote Boya too ;-)

    Baez discussion, last year.
    http://golem.ph.utexas.edu/category/2009/03/index_juggling_in_superyangmil.html
    and Huerta homepage:
    http://math.ucr.edu/~huerta/
    Tony smith holistic webpage:
    http://www.valdostamuseum.org/hamsmith/ [Broken]
    Evans paper, you can download the preprint from HEP
    http://www.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B298,92 [Broken]
    Spires search by title
    http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=FIND+T+DIVISIO%23+ALGEBRAS+OR+T+NORMe%23++ALGEBRAS&FORMAT=www&SEQUENCE=citecount%28d%29 [Broken]
    Subtopic "octonions"
    http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=FIND+t+octonio%23+or+k+octonion%23&FORMAT=www&SEQUENCE=citecount%28d%29 [Broken]
    RCHO as seen from Zaragoza
    http://arxiv.org/pdf/hep-th/0301037v1

    I should add some references to minor related topics, as for instance S7 and S13 and the Atiyah Arnold etc results on related fiberings there. But I refrain, hoping that some reader will also show interest on the topic...
     
    Last edited by a moderator: May 4, 2017
  4. Feb 9, 2010 #3
    You must be moving at quite some speed wrt to PF server, because a few days for you turned out to be 5 minutes here ! Are you running in circle ?
     
  5. Feb 9, 2010 #4

    arivero

    User Avatar
    Gold Member

    Not circle, but U(1) :D Really I have not read it yet, only look the references. I happen to be busy on Hopf fiberings nowadays, so it was not a good idea to leave it go.
    Ok, I am going to send it to the printer, to read in the bus.
     
  6. Feb 10, 2010 #5

    arivero

    User Avatar
    Gold Member

    It is not strange to get the standard model out from the octonions. The space of unit octonions is the sphere S7. And this sphere is "branched covered" by Witten's manifolds in a peculiar way:

    S3 ---> S7 -----> S4 is the (generalised) Hopf fiber bundle of the sphere
    S3 ---> M ------> CP2 is the fiber bundle schema both of Witten Manifold and also of some Aloff-Wallach spaces. In the first case, both the fiber and the bundle provide symmetries: SU(2)xU(1) and SU(3), respectively, as isometries of each. Remember S4 is HP1.

    You can also fiber CP2 with an extra U(1) to get S5, whose isometry group is SO(6)=SU(4). This is the "lepton as the fourth colour" approach, and probably is nearer of Furey, who looks for the gauge group in C \otimes O.

    The real problem of the RCHO approaches is to get the Higgs. Alain Connes got near of it, by considering two actions by CxH and CxM3, the 3x3 matrix, instead of O. See the Red Book.

    If you dont get the Higgs, another mechanism for symbreak should exist. For instance, deformations of the metric. It is interesting that Alof-Wallach spaces do not have SU(2) isometry.

    The relationship between CP2 and S4, as well as other RCHO compositions, is explained in math/0206135 by Atiyah and Berndt.
     
    Last edited: Feb 10, 2010
  7. Feb 10, 2010 #6

    MTd2

    User Avatar
    Gold Member

    I saw that paper, but I didn't read it. Why was that put on general physics? At first site, it looks like a serious work.
     
  8. Feb 10, 2010 #7

    arivero

    User Avatar
    Gold Member

    Let me go back to the unit sphere of octonions, I mean [itex]S^7[/itex]. Note [itex]S^3, S^1, S^0[/itex] are groups, while [itex]S^7[/itex] is not. First clue that we are hitting the octonionic world.

    A point that intrigues me is that we can see this sphere in four different spaces: [itex]R^8, C^4, H^2, O[/itex]. Just as the [itex]S^3[/itex] can be seen in [itex]R^4, C^2[/itex] or [itex]H[/itex].

    For [itex]S^3[/itex], the Hopf fibration works by projecting [itex]C^2[/itex] in [itex]CP^1[/itex].
    For [itex]S^7[/itex], the Hopf fibration works by projecting [itex]H^2[/itex] in [itex]HP^1[/itex]

    But there are other projections. In [itex]S^3[/itex] I can also project in [itex]RP^3[/itex]. In [itex]S^7[/itex] I can project in [itex]RP^7[/itex] or also in [itex]CP^3[/itex].

    But I can not do "middle way" projections. I can not project [itex]S^7[/itex] in, say, [itex]CP^2[/itex] and get a meaningful fiber bundle. If I build U(1) fiber bundles over [itex]CP^3[/itex] I get the sphere again, but if I build U(1) fiber bundles over [itex]CP^2 \times CP^1[/itex] I get Witten's spaces, the ones with isometry group SU(3)xSU(2)xU(1).

    It should be interesting to understand this game algebraically, down from the octonion sphere.
     
  9. Oct 18, 2010 #8

    arivero

    User Avatar
    Gold Member

  10. Oct 18, 2010 #9

    MTd2

    User Avatar
    Gold Member

    I told Tony Smith about the Octonion`s paper. He got really excited.
     
  11. Oct 18, 2010 #10

    MTd2

    User Avatar
    Gold Member

    Well, quoting from the other thread :)

    But the belt trick is in 3 spatial dimensions and it doesn`t seem that Furey defines anything in other than 3+1d. How come?
     
  12. Oct 18, 2010 #11

    arivero

    User Avatar
    Gold Member

    Just a minor correction here: it is Kauffman, no Furey, who does the belt trick in the last paper.

    The important point, at the end, is if they can bypass Salam's objection about the charges. I guess that the C in CxO has a role there, because Bailin and Love did the bypass by going up one dimension.
    And of course, they should solve the issue of breaking a SU(2)xSU(2) into SU(2)xU(1), perhaps related to chirality, and the selection for colour of SU(3) instead of SO(5). I think that these details are minor, but people will consider them important.
     
  13. Oct 18, 2010 #12

    MTd2

    User Avatar
    Gold Member

    I was talking about both of them. Kauffman in 3d and Furey in 3+1.

    page 2 here:

    "The groups are uni ed with the vectors they transform, and further, those vectors: the scalars, spinors, 4-momenta and eld strength tensors, are all born from the same meagre algebra."

    http://www.perimeterinstitute.ca/personal/cfurey/UTI20100805.pdf
     
  14. Oct 19, 2010 #13

    arivero

    User Avatar
    Gold Member

    Thers is no belt trick there. It is not that it can not be performed, but Furey tells nothing about it, it just puts a generic reference to Hestenes due to the use of Lorentz group. You have been dreaming some extra pages in the article, it seems :-)

    Moreover, that parragraph refers to C \otimes H. Even if there were a belt trick in the references, it would not be about octonions.
     
  15. Oct 19, 2010 #14

    MTd2

    User Avatar
    Gold Member

    I wasn't talking about belt trick on Furey's paper. 3d for belt trick and Kauffman's paper and 3d+1 for Furey's.

    You asked me about having a line of research for a new kind of quantum gravity. The paper mentions that, but I forgot where. I found it now:)

    page. 10

    "Extending on the relationship of the quaternions with SU(2) is the question of whether this model could provide illumination to attempts to use the octonions to construct the standard model of particle physics - such as the attempt in [2]. Here again the resemblance of L to parity inversion is suggestive of something more profound. We will continue these considerations in a sequel to the present paper"

    Anyway, if you are a beginner, and like you said before, a very courageous one, and you receive and invitation or sugestion from a Grand Master like Louis Kauffman, wouldn't you follow it? :smile: :biggrin:
     
  16. Oct 19, 2010 #15

    arivero

    User Avatar
    Gold Member

    Ah, but Furey's is not 3+1.

    He takes R,C,H,O, then he mixes a bit the R and the C, then he uses CxH to generate the Lorentz Group (acting in 3+1) and _separately_ he uses CxO to generate the gauge group... and he does not tell where this gauge group is acting. But if you compare CxH and CxO, you should deduce that the group got from CxO is acting also in some space. You could expect to be an object of a dimension 7+1. Which is the right result, because 7 is the minimum for the standard model and 8 for the GUT groups, and probably it is something between, because he should use R and C instead of two times C, when putting all together.

    Note that in the standard theory also the 11 dimensional space divides in a very natural way into 4+7. This is well known.
     
  17. Oct 19, 2010 #16

    MTd2

    User Avatar
    Gold Member

    Let's see how many dimensions this RCHO has.

    On page 2:

    "The generic element of CHO is [FORMULA]. Imaginary units of the di ferent division
    algebras always commute with each other; explicitly, the
    complex i commutes with the quaternionic i; j; k, all four
    of which commute with the octonionic feng."

    That means 2x4x8=64 dimensions.

    Everything there happens in a certain hypersurface with the property of being and ideal of the algebra.
     
  18. Oct 19, 2010 #17

    arivero

    User Avatar
    Gold Member

    I count the unit ball in C times the unit ball in H times the unit ball in O. That makes 11.

    Consider the product of a line and a circle. It is a cylinder. When you multiply manifolds, the dimensions add. And the same happens when you multiply commutative algebras (eg, the algebra of complex functions over the circle times the algebra of complex functions over the line): the dimensions of their Gelfand Naimark dual add.

    A different problem is when you have a non commutative algebra. In this case two approaches are known: Morita equivalence, which doest a sort of reduction of most finite algebras to be equivalent to the algebra of complex functions over a dot. Or group theory, where you look for symmetry groups, for instance isolating the unit ball: a circle, a S3 sphere, or a S7 sphere for the respective case C, H, O.
     
  19. Oct 19, 2010 #18

    arivero

    User Avatar
    Gold Member

    This discusion is suggesting me an off-topic question. Suppose that you have an abstract theory that can be (Right/Wrong) and from the point of view of mainstream research it is (Orthodox/Heterodox).

    Which is the order of preference you would assign to the four possible combinations?

    I would go by RO > RH > WH > WO, but I am not militant.
     
    Last edited: Oct 19, 2010
  20. Oct 19, 2010 #19

    arivero

    User Avatar
    Gold Member

    I agree that the point raised in this parragraph is of grave consequence, seriousness or importance.
     
  21. Oct 19, 2010 #20

    MTd2

    User Avatar
    Gold Member

    There is no topological consideration on this paper. All there is direct multiplication of matrices. On the conclusion:

    "Conclusion. Uni ed Theory of Ideals puts forward the
    idea that all of the particles of the Standard Model, and
    their transformations, come from a single algebra acting
    on itself. This more powerful form of uni cation aims to
    describe all of the gauge and spacetime degrees of freedom,
    using only the 32 complex-dimensional algebra of
    RxCxHxO".

    So, 64 dimensional matrices.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: R c h o
  1. Speed of light=c=c(f) (Replies: 5)

  2. R Symmetry (Replies: 4)

Loading...