MHB Can Cubic Roots and Square Roots Combine to Equal One?

  • Thread starter Thread starter mathdad
  • Start date Start date
  • Tags Tags
    Radical
AI Thread Summary
The discussion revolves around proving that the sum of the cube roots of two expressions, cbrt{2 + sqrt{5}} and cbrt{2 - sqrt{5}}, equals one. Participants suggest raising both sides to the third power and using the identity for the expansion of a binomial cube. The calculations show that both cube roots can be expressed in terms of (1 ± sqrt{5})/2, leading to the conclusion that their sum is indeed 1. The conversation emphasizes solving the problem manually rather than relying on calculators, highlighting the satisfaction of working through the math by hand. The proof is confirmed as correct, reinforcing the validity of the approach.
mathdad
Messages
1,280
Reaction score
0
Let cbrt = cube root

Let sqrt = square root

Show that
cbrt{2 + sqrt{5}} + cbrt{2 - sqrt{5}} = 1 without using a calculator.

Can someone get me started?

Do I raise both sides to the third power as step 1?
 
Mathematics news on Phys.org
It holds that $$(a\pm b)^3=a^3\pm 3a^2b+3ab^2\pm b^3$$

We have the following:
\begin{align*}&\left(1\pm \sqrt{5}\right )^3=1\pm 3\sqrt{5}+3\cdot 5\pm \sqrt{5}^3 =1\pm 3\sqrt{5}+15\pm 5\sqrt{5} =16\pm 8\sqrt{5}=8\left (2\pm \sqrt{5}\right )\\ & \Rightarrow 2\pm \sqrt{5}=\frac{\left(1\pm \sqrt{5}\right )^3}{8} \\ & \Rightarrow \sqrt[3]{2\pm \sqrt{5}}=\sqrt[3]{\frac{\left(1\pm \sqrt{5}\right )^3}{8}} \\ & \Rightarrow \sqrt[3]{2\pm \sqrt{5}}=\frac{1\pm \sqrt{5}}{2}\end{align*}

Therefore we get $$\sqrt[3]{2+ \sqrt{5}}+\sqrt[3]{2- \sqrt{5}}=\frac{1+ \sqrt{5}}{2}+\frac{1- \sqrt{5}}{2}=1$$
 
RTCNTC said:
Let cbrt = cube root

Let sqrt = square root

Show that
cbrt{2 + sqrt{5}} + cbrt{2 - sqrt{5}} = 1 without using a calculator.

Can someone get me started?

Do I raise both sides to the third power as step 1?

you need to prove $\sqrt[3]{2 + \sqrt{5}} + \sqrt[3]{2 - \sqrt{5}} = 1$

you can let $\sqrt[3]{2 + \sqrt{5}} + \sqrt[3]{2 - \sqrt{5}} = x$ and cube both sides and see hat you get after solving it
 
mathmari said:
It holds that $$(a\pm b)^3=a^3\pm 3a^2b+3ab^2\pm b^3$$

We have the following:
\begin{align*}&\left(1\pm \sqrt{5}\right )^3=1\pm 3\sqrt{5}+3\cdot 5\pm \sqrt{5}^3 =1\pm 3\sqrt{5}+15\pm 5\sqrt{5} =16\pm 8\sqrt{5}=8\left (2\pm \sqrt{5}\right )\\ & \Rightarrow 2\pm \sqrt{5}=\frac{\left(1\pm \sqrt{5}\right )^3}{8} \\ & \Rightarrow \sqrt[3]{2\pm \sqrt{5}}=\sqrt[3]{\frac{\left(1\pm \sqrt{5}\right )^3}{8}} \\ & \Rightarrow \sqrt[3]{2\pm \sqrt{5}}=\frac{1\pm \sqrt{5}}{2}\end{align*}

Therefore we get $$\sqrt[3]{2+ \sqrt{5}}+\sqrt[3]{2- \sqrt{5}}=\frac{1+ \sqrt{5}}{2}+\frac{1- \sqrt{5}}{2}=1$$

Nicely done! This is not your typical radical equation problem. I could have easily used the wolfram website but this is like cheating. I like to work it out by hand and then check my answer using wolfram or mathway.com.

- - - Updated - - -

kaliprasad said:
you need to prove $\sqrt[3]{2 + \sqrt{5}} + \sqrt[3]{2 - \sqrt{5}} = 1$

you can let $\sqrt[3]{2 + \sqrt{5}} + \sqrt[3]{2 - \sqrt{5}} = x$ and cube both sides and see hat you get after solving it

I understand what you mean but where did x come from? The original equation is equated to 1 not x.
 
RTCNTC said:
Nicely done! This is not your typical radical equation problem. I could have easily used the wolfram website but this is like cheating. I like to work it out by hand and then check my answer using wolfram or mathway.com.

- - - Updated - - -
I understand what you mean but where did x come from? The original equation is equated to 1 not x.

you are supposed to prove that it is 1. you do not know it. so presume that it is x. then cube and remove redicals and solve for x.
it should come to be 1.
 
Thank you everyone.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top