Radii of convergence for exponential functions

Click For Summary
The discussion centers on finding the radius of convergence for three functions involving exponential terms. The ratio test was applied to each function, leading to the conclusion that all have a radius of convergence of infinity. It is emphasized that the concept of radius of convergence applies specifically to power series centered at a point, which was not specified in the problem. The functions discussed are infinitely differentiable, supporting the claim of convergence. Overall, the analysis confirms that these functions converge everywhere, particularly noting the behavior at x=0 for the last function.
Bionerd
Messages
12
Reaction score
0

Homework Statement



I have to find the radius of convergence for each: (A) e^3x (B) xe^(-x)^2 (C) (e^x-1)/x


Homework Equations



So I used the ratio test for each. I'll only write out the answer I got since I'm pretty sure I did them correctly.

(A) abs. value (x) lim n--> infinity 3/(n+1)

(B) abs. value (x^2) lim n--> infinity 1/(n+1)

(C) abs. value (x) lim n--> infinity 1/(n+1)

The Attempt at a Solution



My question isn't so much about how to do them (I can always go back and redo the ratio test if my answers are wrong) but about what to claim as the radius of convergence. For all of these, it seems to be infinity, and I know e^x has a radius of convergence of infinity. Do all of these really have the same radius of convergence?
 
Physics news on Phys.org
I don't feel like doing the calculations either, but your answers are correct. In fact, I think the series of anything of the form (polynomial)x(exponential) will always converge everywhere (you can try proving it, probably it's easy as it just shifts the powers in the series expansion up or down, so it shifts the coefficients a_n, but that doesn't matter for thhe limit n -> infinity). Actually the only case which needs special attention is then the third one, but you see quickly enough that at the dangerous point (x = 0) nothing special happens (using L'Hopital, the limit x -> 0 exists, etc) and indeed your calculation shows that despite appearances there is no problem there either.
 
Last edited:
First, look at the way you have posed the question. In general, functions don't have a "radius of convergence"! Power series have a radius of convergence. So you are really asking "what is the radius of convergence of a power series converging to these functions?" But the power series has to be about a specific "central point": (x-a)n for some a. If a power series does not converge for all x (i.e. its radius of convergence is not infinity), then the radius of convergence will depend upon the central point- which you are not given here! In general, a power series will converge "as long as there is no reason not to" which basically means "as long as the function is infinitely differentiable. As CompuChip says, it is obvious, for all except possibly the last, that, since ex is infinitely differentiable, so are these. And, again as CompuChip says, it is clear, by being careful with limits at x= 0, that the last is also infinitely differentiable.
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K