FAQ: Do rates of nuclear decay depend on environmental factors?
There is one environmental effect that has been scientifically well established for a long time. In the process of electron capture, a proton in the nucleus combines with an inner-shell electron to produce a neutron and a neutrino. This effect does depend on the electronic environment, and in particular, the process cannot happen if the atom is completely ionized.
Other claims of environmental effects on decay rates are crank science, often quoted by creationists in their attempts to discredit evolutionary and geological time scales.
He et al. (He 2007) claim to have detected a change in rates of beta decay of as much as 11% when samples are rotated in a centrifuge, and say that the effect varies asymmetrically with clockwise and counterclockwise rotation. He believes that there is a mysterious energy field that has both biological and nuclear effects, and that it relates to circadian rhythms. The nuclear effects were not observed when the experimental conditions were reproduced by Ding et al.
Jenkins and Fischbach claim to have observed effects on alpha decay rates correlated with an influence from the sun. They proposed that their results could be tested more dramatically by looking for changes in the rate of alpha decay in radioisotope thermoelectric generators aboard space probes. Such an effect turned out not to exist (Cooper 2009).
Cardone et al. claim to have observed variations in the rate of alpha decay of thorium induced by 20 kHz ultrasound, and claim that this alpha decay occurs without the emission of gamma rays. Ericsson et al. have pointed out multiple severe problems with Cardone's experiments.
He YuJian et al., Science China 50 (2007) 170.
YouQian Ding et al., Science China 52 (2009) 690.
Jenkins and Fischbach (2008),
http://arxiv.org/abs/0808.3283v1
Jenkins and Fischbach (2009),
http://arxiv.org/abs/0808.3156
Cooper (2009),
http://arxiv.org/abs/0809.4248
F. Cardone, R. Mignani, A. Petrucci, Phys. Lett. A 373 (2009) 1956
Ericsson et al., Comment on "Piezonuclear decay of thorium," Phys. Lett. A 373 (2009) 1956, http://arxiv4.library.cornell.edu/abs/0907.0623
Ericsson et al.,
http://arxiv.org/abs/0909.2141