I Raising the ladder operators to a power

MooshiS
Messages
2
Reaction score
1
Hi! I am working on homework and came across this problem:

<n|X5|n>

I know X = ((ħ/(2mω))1/2 (a + a+))

And if I raise X to the 5th, its becomes X5 = ((ħ/(2mω))5/2 (a + a+)5)

What I'm wondering is, is there anyway to be able to solve this without going through all of the iterations the raising and lowering operators will create being raised to the 5th power? Or will I just have to tackle every strain this will produce?
 
Physics news on Phys.org
One thing you might notice is that only terms with equal numbers of ##a^+## and ##a## will be non zero.
 
  • Like
Likes MooshiS
Paul Colby said:
One thing you might notice is that only terms with equal numbers of ##a^+## and ##a## will be non zero.
XD Oh man, thanks, that actually makes this problem a cakewalk
 
Even more generally, there is something called Wick's theorem which is invaluable to computing these sorts of expectation values. It essentially uses the trick pointed out by Paul Colby, but more explicitly reduces computing harmonic oscillator expectation values to a combinatorics problem (rather than laboriously doing all the commutations).
 
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...
Back
Top