kolleamm said:
It's quite simply actually. Every object in the universe influences every other object gravitationaly, no matter how far. If object A moves slightly closer to object B, it will pull object B closer to it with a greater force. This would affect the positions of the electrons in both the objects.
Now if you look at things on a much bigger scale (the scale of the universe) it would make sense that the complex movements of objects/particles throughout it could gravitationaly disrupt the positions of particles noticeably on a quantum level thus giving us that seeming randomness in these particles' positions.
Im reviewing Lee Smolin book Einstein Unfinished Revolutions and he has similar ideas. Quoting a bit.
"In this theory, the phenomena of quantum physics arise from a continual interplay between the similar systems that make up an ensemble. The partners of an atom in my glass of water are spread through the universe. The indeterminism and uncertainties of quantum physics arise from the fact that we cannot control or observe those different systems. In this picture, an atom is quantum because it has many nearly identical copies of itself, spread through the universe.
An atom with its neighborhood has many copies because it is close to the smallest possible scale. It is simple to describe, as it has few degrees of freedom. In a big universe it will have many near copies.
Large, macroscopic systems such as cats, machines, or ourselves have, by contrast, a vast complexity, which takes a great deal of information to describe. Even in a very big universe, such systems have no close or exact copies. Hence, cats and machines and you and I are not part of any ensemble. We are singletons, with nothing similar enough to interact with through the nonlocal interactions. Hence we do not experience quantum randomness. This is a solution to the measurement problem.
This theory is new, and, as is the case with any new theory, it is most likely wrong. One good thing about it is that it will most likely be possible to test it against experiment. It is based on the idea that systems with a great many copies in the universe behave according to quantum mechanics, because they are continually randomized by nonlocal interactions with their copies.
I argued that large complex systems have no copies, and hence are not subject to quantum randomness. But can we produce microscopic systems, made from a small number of atoms, which also have no copies anywhere in the universe? Such systems would not obey quantum mechanics, in spite of being microscopic."