- #1
ccrook
- 14
- 0
I recognize the rate of change of a vector in an inertial frame S can be related to the rate of change of the vector in a rotating frame S0 by the equation below taken from my textbook, where Ω is the angular velocity vector. $$\Big(\frac{dQ}{dt}\Big)_{S_{0}}= \Big(\frac{dQ}{dt}\Big)_{S} + \Omega \times Q$$
However, I am unsure which frame of reference Q refers to in the cross product.
However, I am unsure which frame of reference Q refers to in the cross product.