Ratio of frequency between heavier and lighter part of composite cord

AI Thread Summary
The discussion centers on the frequency of a composite cord connected to a vibrating source, confirming that sections A and B vibrate at the same frequency of 100 Hz. Participants clarify that while the frequencies are equal, the wave speeds and wavelengths differ due to the varying densities of the cord's sections. Some suggest the question may be misleading, implying it could be asking for the ratio of wavelengths instead. The importance of recognizing conceptual consistencies in physics is emphasized, highlighting a common misconception in relativity. Understanding these fundamental principles is crucial for mastering the subject.
songoku
Messages
2,488
Reaction score
393
Homework Statement
Please see below
Relevant Equations
v = λ.f
1714016152742.png


Is the answer 1? Because the cord is connected to vibrating source and it vibrates with a frequency of 100 Hz so section A and B have the same frequency

Thanks
 
Physics news on Phys.org
songoku said:
Homework Statement: Please see below
Relevant Equations: v = λ.f

View attachment 344025

Is the answer 1? Because the cord is connected to vibrating source and it vibrates with a frequency of 100 Hz so section A and B have the same frequency

Thanks
Either it is a trick question or they meant to ask for the ratio of wavelengths.
 
Yes, the frequencies must be the same. The speed of the waves and the wavelengths will differ.
 
Thank you very much haruspex and Orodruin
 
haruspex said:
Either it is a trick question or they meant to ask for the ratio of wavelengths.
I would not call it a trick question. Realising that something conceptual does not change or when something is trivial is a very important skill in understanding a subject. For example, I keep asking relativity students a question where a muon travels a certain distance in the lab frame before decaying and I want them to tell me how far it travels in its rest frame. I keep asking because I have seen people get it wrong so many times and it illustrates something fundamental.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top