MHB Rational: $(p^2+1)(q^2+1)(r^2+1)$ is Square

  • Thread starter Thread starter kaliprasad
  • Start date Start date
  • Tags Tags
    Rational
AI Thread Summary
For rational numbers \( p, q, r \) satisfying \( pq + qr + rp = 1 \), it is demonstrated that \( (p^2+1)(q^2+1)(r^2+1) \) is a perfect square. The roots of the polynomial \( x^3 - \lambda x^2 + x - \nu = 0 \) relate to \( p, q, r \), where \( \lambda = p+q+r \) and \( \nu = pqr \). By transforming the polynomial to find the roots \( p^2, q^2, r^2 \), the resulting equation for \( p^2+1, q^2+1, r^2+1 \) shows that their product equals \( (\lambda - \nu)^2 \). This confirms that \( (p^2+1)(q^2+1)(r^2+1) \) is indeed the square of a rational number. The discussion highlights the relationship between the roots and the conditions set by the initial equation.
kaliprasad
Gold Member
MHB
Messages
1,333
Reaction score
0
Show that for $p,q,r$ if $pq+qr+rp=1$ then $(p^2+1)(q^2+1)(r^2+1)$ is square of rational number
 
Mathematics news on Phys.org
Are $p,\, q$ and $r$ rational numbers?
 
Euge said:
Are $p,\, q$ and $r$ rational numbers?

Thanks for pinpointing. They are rational.
 
Ok then, here's my solution.

We have

$\displaystyle (p^2+1)(q^2+1)(r^2+1)$

$\displaystyle = (pqr)^2 + [(pq)^2 + (qr)^2 + (rp)^2] + (p^2 + q^2 + r^2) + 1$

$\displaystyle = (pqr)^2 + [(pq+qr+rp)^2-2(pqr)(p+q+r)] + [(p+q+r)^2-2(pq+qr+rp)] + 1$

$\displaystyle = (pqr)^2 + [1 - 2(pqr)(p+q+r)] + [(p+q+r)^2-2] + 1$

$\displaystyle = (pqr)^2 - 2(pqr)(p+q+r) + (p+q+r)^2$

$\displaystyle = (pqr - p - q - r)^2$.

Since $p,\, q$ and $r$ are rational, so is $pqr - p - q - r$. Thus we have shown that $(p^2+1)(q^2+1)(r^2+1)$ is the square of the rational number $pqr-p-q-r$.
 
Another solution:
[sp]Let $x^3 - \lambda x^2 + x - \nu = 0$ be the equation with roots $p,q,r$ (so that $\lambda = p+q+r$ and $\nu = pqr$, the coefficient of $x$ being $qr+rp+pq = 1$).

The equation with roots $p^2,q^2,r^2$ is $x^{3/2} - \lambda x + x^{1 /2} - \nu = 0$, or $x^{1 /2}(x+1) = \lambda x + \nu$, or $x(x+1)^2 = \lambda^2x^2 + 2\lambda\nu x + \nu^2$.

The equation with roots $p^2+1, q^2+1, r^2+1$ is obtained by substituting $x-1$ for $x$ in that last equation, getting $(x-1)x^2 = \lambda^2(x-1)^2 + 2\lambda\nu (x-1) + \nu^2$, or $x^3 - (1+\lambda^2)x^2 + 2\lambda(\lambda-\nu)x - (\lambda^2 - 2\lambda\nu + \nu^2) = 0$. The product of the roots of that equation is $(p^2+1)(q^2+1)(r^2+1) = \lambda^2 - 2\lambda\nu + \nu^2 = (\lambda - \nu)^2$, which is the square of the rational number $\lambda - \nu$.[/sp]
 
2 excellent solutions above. Here is mine and definitely more complex and hence not elegant

$pq+qr+rp = 1$

so $p = \dfrac{1-qr}{q+r}$
Here I may mention that if $q+r = 0$ the we can permute $p,q,r$ such that q+r is not zero

if we chose $q =\ tan\, A$ and $r =\ tan\ B$
we get

$\frac{1}{p} =\dfrac{q+r}{1-qr} =\dfrac {(\tan\ A +\ tan\ B}{(1- \tan\ A\ tan\ B}=\ tan (A+B)$

or $p = \cot (A+B)$

we can chose q and r to be <1 in case we want positive else even -ve also
$(p^2+1) (q^2+1)(r^2+ 1)$
= $\sec^2 A\ \sec ^2 B\ \csc^2 (A+B)$
= $\dfrac{(\sec^2 A\ \ sec^2 B}{\sin^2 (A+B)}$
this is square of reciprocal of $\ sin (A+B)\ cos\ A\ \cos\ B$
$\sin (A+B) \cos\ A\ \cos B$
=$( \sin\ A\ \cos B + \cos\ A\ \sin B)cos\ A\ \ cos\ B$
=$ \sin\ A\ \cos \ A\ \cos ^2B +\ cos^2 A \ \sin B\ \ cos B$
=$\tan\ A\ \ cos ^2 A\ \ cos ^2 B +\ tan\ B \ \
cos ^2 A\ \ cos ^2 B$
= ${(\tan\ A + \tan\ B)}{/(\sec^2 A\ \sec ^2B)}$
= $\dfrac{tan\ A + tan\ B}{(1+ tan ^2 A)(1+ tan ^2B)}$

so $(p^2+1) (q^2+1)(r^2+ 1)$
= $\dfrac{((1+ \tan ^2 A )(1+\tan ^2B)}{(\tan \ A +\ tan B))^2}$

if $ \tan \ A$ and $tan\ B$ that is q and r are rational then

$\dfrac{(1+ \tan ^2 A)(1+\tan ^2B)}{(\tan\ A +\tan\ B)}$ is rational and so $(p^2 +1)(q^2+1)(r^2 +1)$ is the square of a rational no.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top