I'd be very interested in any of the expert's thoughts on this paper, assuming it's okay to discuss it. I couldn't see what journal it was published in or submitted to.(adsbygoogle = window.adsbygoogle || []).push({});

It's even zany by my standards but I really like it because it seems to take the seemingly dual notions of

(sorry about the imprecise lumps, I can hardly tell them apart)

- non-local, holographic screen
- AdS MERA entangled boundary dimension
- CFT global wave state

directly as it's subject, proposing how some space-like separated process thus connected, operates in the bulk. It even seems to allude to the SLOT as extension of the fundamental principle (just my liberal and rough alt+interpretation of the "Maximal Variety" principle).

http://arxiv.org/abs/1506.02938

Quantum mechanics and the principle of maximal variety

Lee Smolin

(Submitted on 9 Jun 2015)

Quantum mechanics is derived from the principle that the universe contain as much variety as possible, in the sense of maximizing the distinctiveness of each subsystem.

The quantum state of a microscopic system is defined to correspond to an ensemble of subsystems of the universe with identical constituents and similar preparations and environments. A new kind of interaction is posited amongst such similar subsystems which acts to increase their distinctiveness, by extremizing the variety. In the limit of large numbers of similar subsystems this interaction is shown to give rise to Bohm's quantum potential. As a result the probability distribution for the ensemble is governed by the Schroedinger equation.

The measurement problem is naturally and simply solved. Microscopic systems appear statistical because they are members of large ensembles of similar systems which interact non-locally. Macroscopic systems are unique, and are not members of any ensembles of similar systems. Consequently their collective coordinates may evolve deterministically.

This proposal could be tested by constructing quantum devices from entangled states of a modest number of quits which, by its combinatorial complexity, can be expected to have no natural copies.

**Physics Forums - The Fusion of Science and Community**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Recent Smolin Paper

**Physics Forums - The Fusion of Science and Community**