MHB Reflecting Ray from Concave Mirror: Parabola Focus

AI Thread Summary
The discussion focuses on the reflection of a ray of light striking a concave mirror defined by the parabola \( y^2 = 4ax \). The point of incidence on the mirror is calculated as \( \left(\frac{b^2}{4a}, b\right) \). Using the law of reflection, the slope of the reflected ray is derived, leading to the equation \( y - b = \frac{4ab}{b^2 - 4a^2} \left( x - \frac{b^2}{4a} \right) \). It is shown that this reflected ray passes through the focus of the parabola, located at \( (a, 0) \). The analysis confirms that the focus's position is independent of the initial height \( b \).
sbhatnagar
Messages
87
Reaction score
0
A ray of light is coming along the line $y=b$,($b>0$), from the positive direction of the x-axis and strikes a concave mirror whose intersection with the $x-y$ plane is the parabola $y^2 = 4ax$,($a>0$). Find the equation of the reflected ray and show that it passes through the focus of the parabola.
 
Mathematics news on Phys.org
The point on the mirror where the ray strikes it is:

$\displaystyle \left(\frac{b^2}{4a},b \right)$

The law of reflection states that the angle of incidence is equal to the angle of reflection.

Let $\displaystyle x_r=my+k$ represent the path of the reflected ray. We need to show that $\displaystyle (k,0)$ is the focus of the parabola, and is in fact independent of $\displaystyle b$.

The law of reflection gives us:

$\displaystyle \frac{\pi}{2}-\tan^{-1}\left(\frac{dx}{dy} \right)=\tan^{-1}\left(\frac{dx}{dy} \right)+\pi-\tan^{-1}(m)$

Simplifying and using $\displaystyle \frac{dx}{dy}=\frac{y}{2a}$ we have:

$\displaystyle \tan^{-1}(m)-\frac{\pi}{2}=2\tan^{-1}\left(\frac{y}{2a} \right)$

Taking the tangent of both sides, using a co-function identity on the left and a double-angle identity on the right, we have:

$\displaystyle -\frac{1}{m}=\frac{\frac{y}{a}}{1-\left(\frac{y}{2a} \right)^2}$

$\displaystyle m=\frac{\left(\frac{y}{2a} \right)^2-1}{\frac{y}{a}}=\frac{y^2-4a^2}{4ay}$

We may now state, using the point $\displaystyle \left(\frac{b^2}{4a},b \right)$:

$\displaystyle k=\frac{b^2}{4a}-\left(\frac{b^2-4a^2}{4ab} \right)b=\frac{b^2-b^2+4a^2}{4a}=a$

We know the focus of the given parable is at $\displaystyle (a,0)$, thus we have shown the reflected ray will pass through the focus.
 
Here are my ideas. Let $P$ be the point of incidence. $P$ is the intersection of the line $y=b$ and the parabola $y^2=4ax$.

View attachment 490

The point $P$ will be $\left( \frac{b^2}{4a},b\right)$.
The equation of tangent $PT$ at $P$ is

$y \cdot b=2a\left( x+\frac{b^2}{4a}\right)$

The slope of this line is $\displaystyle \tan(\theta)=\frac{2a}{b}$(see the diagram)

Let the slope of the reflected ray be $m$.

$$ \begin{aligned} \therefore \ \tan \theta &= \Bigg| \frac{m-\frac{2a}{b}}{1+m\frac{2a}{b}}\Bigg| \\ \frac{2a}{b} &=\Bigg| \frac{m-\frac{2a}{b}}{1+m\frac{2a}{b}}\Bigg|\end{aligned} $$

From here, $\displaystyle m= \frac{4ab}{b^2-4a^2}$

Therefore, the equation of the reflected ray is

$\displaystyle y-b=\frac{4ab}{b^2-4a^2} \left( x-\frac{b^2}{4a}\right)$

This line satisfies the point $(a,0)$, therefore the reflected ray passes through the focus.
 

Attachments

  • parabola- figure.png
    parabola- figure.png
    2 KB · Views: 103
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top