MHB Reflecting Ray from Concave Mirror: Parabola Focus

sbhatnagar
Messages
87
Reaction score
0
A ray of light is coming along the line $y=b$,($b>0$), from the positive direction of the x-axis and strikes a concave mirror whose intersection with the $x-y$ plane is the parabola $y^2 = 4ax$,($a>0$). Find the equation of the reflected ray and show that it passes through the focus of the parabola.
 
Mathematics news on Phys.org
The point on the mirror where the ray strikes it is:

$\displaystyle \left(\frac{b^2}{4a},b \right)$

The law of reflection states that the angle of incidence is equal to the angle of reflection.

Let $\displaystyle x_r=my+k$ represent the path of the reflected ray. We need to show that $\displaystyle (k,0)$ is the focus of the parabola, and is in fact independent of $\displaystyle b$.

The law of reflection gives us:

$\displaystyle \frac{\pi}{2}-\tan^{-1}\left(\frac{dx}{dy} \right)=\tan^{-1}\left(\frac{dx}{dy} \right)+\pi-\tan^{-1}(m)$

Simplifying and using $\displaystyle \frac{dx}{dy}=\frac{y}{2a}$ we have:

$\displaystyle \tan^{-1}(m)-\frac{\pi}{2}=2\tan^{-1}\left(\frac{y}{2a} \right)$

Taking the tangent of both sides, using a co-function identity on the left and a double-angle identity on the right, we have:

$\displaystyle -\frac{1}{m}=\frac{\frac{y}{a}}{1-\left(\frac{y}{2a} \right)^2}$

$\displaystyle m=\frac{\left(\frac{y}{2a} \right)^2-1}{\frac{y}{a}}=\frac{y^2-4a^2}{4ay}$

We may now state, using the point $\displaystyle \left(\frac{b^2}{4a},b \right)$:

$\displaystyle k=\frac{b^2}{4a}-\left(\frac{b^2-4a^2}{4ab} \right)b=\frac{b^2-b^2+4a^2}{4a}=a$

We know the focus of the given parable is at $\displaystyle (a,0)$, thus we have shown the reflected ray will pass through the focus.
 
Here are my ideas. Let $P$ be the point of incidence. $P$ is the intersection of the line $y=b$ and the parabola $y^2=4ax$.

View attachment 490

The point $P$ will be $\left( \frac{b^2}{4a},b\right)$.
The equation of tangent $PT$ at $P$ is

$y \cdot b=2a\left( x+\frac{b^2}{4a}\right)$

The slope of this line is $\displaystyle \tan(\theta)=\frac{2a}{b}$(see the diagram)

Let the slope of the reflected ray be $m$.

$$ \begin{aligned} \therefore \ \tan \theta &= \Bigg| \frac{m-\frac{2a}{b}}{1+m\frac{2a}{b}}\Bigg| \\ \frac{2a}{b} &=\Bigg| \frac{m-\frac{2a}{b}}{1+m\frac{2a}{b}}\Bigg|\end{aligned} $$

From here, $\displaystyle m= \frac{4ab}{b^2-4a^2}$

Therefore, the equation of the reflected ray is

$\displaystyle y-b=\frac{4ab}{b^2-4a^2} \left( x-\frac{b^2}{4a}\right)$

This line satisfies the point $(a,0)$, therefore the reflected ray passes through the focus.
 

Attachments

  • parabola- figure.png
    parabola- figure.png
    2 KB · Views: 100
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top