MHB Reflecting Ray from Concave Mirror: Parabola Focus

Click For Summary
The discussion focuses on the reflection of a ray of light striking a concave mirror defined by the parabola \( y^2 = 4ax \). The point of incidence on the mirror is calculated as \( \left(\frac{b^2}{4a}, b\right) \). Using the law of reflection, the slope of the reflected ray is derived, leading to the equation \( y - b = \frac{4ab}{b^2 - 4a^2} \left( x - \frac{b^2}{4a} \right) \). It is shown that this reflected ray passes through the focus of the parabola, located at \( (a, 0) \). The analysis confirms that the focus's position is independent of the initial height \( b \).
sbhatnagar
Messages
87
Reaction score
0
A ray of light is coming along the line $y=b$,($b>0$), from the positive direction of the x-axis and strikes a concave mirror whose intersection with the $x-y$ plane is the parabola $y^2 = 4ax$,($a>0$). Find the equation of the reflected ray and show that it passes through the focus of the parabola.
 
Mathematics news on Phys.org
The point on the mirror where the ray strikes it is:

$\displaystyle \left(\frac{b^2}{4a},b \right)$

The law of reflection states that the angle of incidence is equal to the angle of reflection.

Let $\displaystyle x_r=my+k$ represent the path of the reflected ray. We need to show that $\displaystyle (k,0)$ is the focus of the parabola, and is in fact independent of $\displaystyle b$.

The law of reflection gives us:

$\displaystyle \frac{\pi}{2}-\tan^{-1}\left(\frac{dx}{dy} \right)=\tan^{-1}\left(\frac{dx}{dy} \right)+\pi-\tan^{-1}(m)$

Simplifying and using $\displaystyle \frac{dx}{dy}=\frac{y}{2a}$ we have:

$\displaystyle \tan^{-1}(m)-\frac{\pi}{2}=2\tan^{-1}\left(\frac{y}{2a} \right)$

Taking the tangent of both sides, using a co-function identity on the left and a double-angle identity on the right, we have:

$\displaystyle -\frac{1}{m}=\frac{\frac{y}{a}}{1-\left(\frac{y}{2a} \right)^2}$

$\displaystyle m=\frac{\left(\frac{y}{2a} \right)^2-1}{\frac{y}{a}}=\frac{y^2-4a^2}{4ay}$

We may now state, using the point $\displaystyle \left(\frac{b^2}{4a},b \right)$:

$\displaystyle k=\frac{b^2}{4a}-\left(\frac{b^2-4a^2}{4ab} \right)b=\frac{b^2-b^2+4a^2}{4a}=a$

We know the focus of the given parable is at $\displaystyle (a,0)$, thus we have shown the reflected ray will pass through the focus.
 
Here are my ideas. Let $P$ be the point of incidence. $P$ is the intersection of the line $y=b$ and the parabola $y^2=4ax$.

View attachment 490

The point $P$ will be $\left( \frac{b^2}{4a},b\right)$.
The equation of tangent $PT$ at $P$ is

$y \cdot b=2a\left( x+\frac{b^2}{4a}\right)$

The slope of this line is $\displaystyle \tan(\theta)=\frac{2a}{b}$(see the diagram)

Let the slope of the reflected ray be $m$.

$$ \begin{aligned} \therefore \ \tan \theta &= \Bigg| \frac{m-\frac{2a}{b}}{1+m\frac{2a}{b}}\Bigg| \\ \frac{2a}{b} &=\Bigg| \frac{m-\frac{2a}{b}}{1+m\frac{2a}{b}}\Bigg|\end{aligned} $$

From here, $\displaystyle m= \frac{4ab}{b^2-4a^2}$

Therefore, the equation of the reflected ray is

$\displaystyle y-b=\frac{4ab}{b^2-4a^2} \left( x-\frac{b^2}{4a}\right)$

This line satisfies the point $(a,0)$, therefore the reflected ray passes through the focus.
 

Attachments

  • parabola- figure.png
    parabola- figure.png
    2 KB · Views: 109
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...