Charismaztex
- 45
- 0
Homework Statement
A spherical tank with an interior diameter of 2m is being filled with water at a rate of 10 liters per second. Determine what rate the height of the water is increasing at when the tank is half full.
Homework Equations
V=\frac{2\pi r^3}{3}-\pi r^2d+\frac{\pi d^3}{3}
Where r is the radius of the sphere and d is the distance from the surface of the water to the top of the hemisphere.
The Attempt at a Solution
We want to find \frac{dh}{dt} but we need another variable to use the chain rule. So I suppose we need to use \frac{dh}{dt}=\frac{dh}{dV}X\frac{dV}{dt}
as we've got the rate of volume fill per second (10 liters per second). So how would I go about making h in terms of v?
Thanks,
Charismaztex