Relation between matrix elements of momentum and position operators

Click For Summary
SUMMARY

The discussion centers on the relationship between the matrix elements of the momentum operator $\widehat{p}$ and the position operator $\widehat{x}$ in the eigenbasis of the Hamiltonian $\widehat{H} = \frac{1}{2M} \widehat{p}^2 + V(\widehat{x})$. The key result derived is the expression $$\frac{ \langle i \, | \, p \, | j \rangle}{\langle i \, | \, x \, | j \rangle} = \frac{iM(E_i - E_j)}{\hbar}$$ which connects the energy eigenvalues $E_i$ and $E_j$ to the matrix elements of the operators. The discussion emphasizes the use of canonical commutation relations and the computation of commutators to derive useful relationships between these operators.

PREREQUISITES
  • Understanding of quantum mechanics, specifically operator theory
  • Familiarity with Hamiltonian mechanics and eigenvalue problems
  • Knowledge of canonical commutation relations
  • Proficiency in manipulating matrix elements of operators
NEXT STEPS
  • Study the derivation of the canonical commutation relations in quantum mechanics
  • Learn about the implications of the Heisenberg uncertainty principle on position and momentum operators
  • Explore the concept of eigenstates and eigenvalues in quantum systems
  • Investigate the role of commutators in quantum mechanics, particularly in relation to time evolution
USEFUL FOR

Students and professionals in quantum mechanics, particularly those studying operator algebra, eigenvalue problems, and the mathematical foundations of quantum theory.

Fantini
Gold Member
MHB
Messages
267
Reaction score
0
Hello. I'm having trouble understanding what is required in the following problem:

Find the relation between the matrix elements of the operators $\widehat{p}$ and $\widehat{x}$ in the base of eigenvectors of the Hamiltonian for one particle, that is, $$\widehat{H} = \frac{1}{2M} \widehat{p}^2 + V(\widehat{x}).$$

I don't understand what kind of relation he is asking for. The eigenvectors for the Hamiltonian satisfy the equation $\widehat{H} \varphi_i = E_i \varphi_i$, but I don't know how to use that. The answer is $$\frac{ \langle i \, | \, p \, | j \rangle}{\langle i \, | \, x \, | j \rangle} = \frac{iM(E_i - E_j)}{\hbar},$$ but it doesn't enlighten me.

How do I find an arbitrary matrix element of an operator?
 
Physics news on Phys.org
Just thinking out loud here. First off, we can tidy up the notation so that everything matches: $\hat{H} \, |i\rangle =E_i \, |i\rangle$, and the same for $j$. Let's remember some of the canonical commutation relations, in case they prove useful:
\begin{align*}
[x,p]&=i\hbar \\
[x,x]&=0 \\
[p,p]&=0 \\
[AB,C]&=A[B,C]+[A,C]B.
\end{align*}
The last allows us to compute
\begin{align*}
[x,H]&=\left[x,\frac{p^2}{2M}+V(x)\right] \\
&=\frac{1}{2M} \, [x,p^2]+\underbrace{[x,V(x)]}_{=0} \\
&=-\frac{1}{2M} \, [p^2,x] \\
&=-\frac{1}{2M} \, \left( p[p,x]+[p,x]p \right) \\
&=\frac{i \hbar}{M} \, p.
\end{align*}
The reason I computed this commutator is because the answer has $E_i$ and $E_j$ in it, leading me to think that we're going to have to calculate something with an $H$ in it. If you calculate $[x,H] \, |j\rangle$ two different ways, you get
$$[x,H] \, |j\rangle = \frac{i\hbar}{M} \, p \, |j\rangle = (E_j-H) \, x \, |j\rangle.$$
Here, I have done
\begin{align*}
[x,H] \, |j\rangle&=(xH-Hx) \, |j\rangle \\
&=xH \, |j\rangle - Hx \, |j\rangle \\
&=x E_j \, |j\rangle-Hx \, |j\rangle \\
&=E_j \, x \, |j\rangle -Hx \, |j\rangle \\
&=(E_j-H) \, x \, |j\rangle.
\end{align*}

It seems to me that these computations might help. Does this give you any ideas?
 

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 32 ·
2
Replies
32
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K