Relativistic and not relativistic motions

  • Thread starter Thread starter bernhard.rothenstein
  • Start date Start date
  • Tags Tags
    Relativistic
bernhard.rothenstein
Messages
991
Reaction score
1
We say that the uniformly accelerated motion x=gtt/2 is not a relativistic motion because after a sufficiently long time of motion v=gt can exceed c. we say that x=cc/g(coshgt'/c-1) is a relativistic motion because the velocity of the motion it describes never becomes c. Do you know other such "relativistic motions?"
sine ira et studio
 
Physics news on Phys.org
Just integrate dp/dt=f(t) for any function f(t), and you will have a
"relativistic motion". If you want x(t), just find v=dx/dt from
v=p/\sqrt{p^2+m^2}, and integrate.
 
Alternately, given any function v(t) < c, one can compute the acceleration required to cause the specified motion. The only thing "special" about special relativistic motion is that |v(t)| < 1. One can also show that the rate of change of momentum with respect to time becomes infinite as v->c, i.e.

<br /> \frac{dp}{dt} = \frac{dp}{dv} \frac{dv}{dt} = \frac{m}{{\left( 1 - \frac{v^2}{c^2} \right)} ^ \frac{3}{2}} \frac{dv} {dt}<br />

Thus as v->c, dp/dt becomes infinite.

One does not really need dynamics to see this, the fact is that if one adds together any number of velocities less than 'c' using the SR velocity addition formula, one gets a resultant velocity less than 'c'.

The process of accelerating is just a process of "adding to" one's original velocity. One must use the SR form of the velocity additon law.

Delta-v = a * delta t

is true only in the objects rest frame, the SR velocity additon formula converts the delta-v in the objects rest frame into the delta-v in the coordinate frame.
 
Last edited:
I started reading a National Geographic article related to the Big Bang. It starts these statements: Gazing up at the stars at night, it’s easy to imagine that space goes on forever. But cosmologists know that the universe actually has limits. First, their best models indicate that space and time had a beginning, a subatomic point called a singularity. This point of intense heat and density rapidly ballooned outward. My first reaction was that this is a layman's approximation to...
Thread 'Dirac's integral for the energy-momentum of the gravitational field'
See Dirac's brief treatment of the energy-momentum pseudo-tensor in the attached picture. Dirac is presumably integrating eq. (31.2) over the 4D "hypercylinder" defined by ##T_1 \le x^0 \le T_2## and ##\mathbf{|x|} \le R##, where ##R## is sufficiently large to include all the matter-energy fields in the system. Then \begin{align} 0 &= \int_V \left[ ({t_\mu}^\nu + T_\mu^\nu)\sqrt{-g}\, \right]_{,\nu} d^4 x = \int_{\partial V} ({t_\mu}^\nu + T_\mu^\nu)\sqrt{-g} \, dS_\nu \nonumber\\ &= \left(...
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Back
Top