I Repeated measurements on a quantum system interacting with other quantum systems

accdd
Messages
95
Reaction score
20
In quantum mechanics if I repeat a measurement of the same observable in succession I get the same quantum state if it is not a degenerate state.
If I make the system under consideration interact with another quantum system and meanwhile keep measuring it what happens?
Does the system not interact because it is being measured? Does the system behave as if it were classical? All answers are welcome
 
  • Like
Likes Peter Morgan
Physics news on Phys.org
Assuming the measurement is a projective measurement:
accdd said:
In quantum mechanics if I repeat a measurement of the same observable in succession I get the same quantum state if it is not a degenerate state.
Why the caveat about degeneracy? The projector ##P_i## is idempotent ( ##P_iP_i\dots P_i|\psi\rangle = P_i|\psi\rangle## ) even if eigenvalue ##i## has degenerate eigenstates.

If I make the system under consideration interact with another quantum system and meanwhile keep measuring it what happens?
Does the system not interact because it is being measured? Does the system behave as if it were classical? All answers are welcome
This corresponds to the scenario ##P_i P_i \dots P_i U |\psi\rangle|\phi\rangle##? We know that ##P_iP_i\dots P_i = P_i## like above.
 
Last edited:
  • Like
Likes accdd and vanhees71
accdd said:
if I repeat a measurement of the same observable in succession I get the same quantum state
You only get the same result and the same state if you repeat precisely the same measurement. Put another way, how close the new measurement is to the old measurement determines how likely it is that you will get the same result. If there's an evolution between the two measurements that modifies the state so that the result of the same measurement would be different, that will be equivalent to there being no such evolution but with the subsequent measurement being different: this is directly comparable to the difference between the Schrödinger picture and the Heisenberg picture of states and measurements.
Sequential measurement is a thing in the literature. My recent article in JPhysA 2022, "The collapse of a quantum state as a joint probability construction", https://doi.org/10.1088/1751-8121/ac6f2f, on arXiv as https://arxiv.org/abs/2101.10931, discusses sequential measurements as part of a wider discussion.
Your one observable case can be thought of as a special case of a commutative algebra of observables. There is a point of view in which a commutative algebra of observables can be thought of as in some sense "classical", however if it were that simple we would not still be talking about interpretations of QM. You could try a paper by Tsang&Caves in Phys. Rev. X 2012, Ref [17] in the article I just mentioned, "Evading quantum mechanics: engineering a classical subsystem within a quantum environment", which develops the idea of Quantum Non-Demolition meeasurement from inside QM, however there are many approaches that come under the general heading "Modal Interpretations" that develop similar ideas.
 
accdd said:
In quantum mechanics if I repeat a measurement of the same observable in succession I get the same quantum state if it is not a degenerate state.
If I make the system under consideration interact with another quantum system and meanwhile keep measuring it what happens?
Does the system not interact because it is being measured? Does the system behave as if it were classical? All answers are welcome
Maybe, the quantum zeno effect might be of interest:

The quantum Zeno effect has an interesting history. It was first understood by von Neumann [3], who proved that any given quantum state ##\phi## can be “steered” into any other state ##\psi##, by applying a suitable series of measurements. If ##\phi## and ##\psi## coincide (modulo a phase factor), the evolution yields, in modern language, a quantum Zeno effect.

From “Quantum Zeno dynamics and quantum Zeno subspaces” by Paolo Facchi, Giuseppe Marmo and Saverio Pascazio (Journal of Physics: Conference Series, Volume 196, SUDARSHAN: SEVEN SCIENCE QUESTS 6–7 November 2006)
 
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...
Back
Top