greswd said:
why is only the angular velocity important when the Lorentz force is dependent on the linear velocity?
olgerm said:
linear velocity is not important because if you change frame of reference all ##\vec{E}##, ##\vec{B}## and ##\vec{v}## change in manner that frameinvariant quantities remain the same.
greswd said:
Sorry, I don't understand what you're saying
E,B,v are different in different frames of reference, but meaningful(frame invariant) claims same in all frames of reference. E,B,v are different in frames of reference, where linear generator is in rest and where it is moving, but whether it is generating power or not is same in both frames of reference.U is EMF.
In frame where linear generator is in rest:
##U=\oint(dl*(\vec{E}+\vec{v}\times \vec{B}))=\oint(dl*(\vec{0}+\vec{0}\times \vec{B}))=0##
In frame where linear generator is moving:
##U=\oint(dl*(\vec{E}+\vec{v}\times \vec{B}))=\oint(dl*\vec{E})+\oint(dl*(\vec{v}\times \vec{B}))=##
(because Maxwell's III equation)
##\oint(dl*(\vec{v}\times \vec{B}))-\frac{\partial \oint (dS*\vec{B})}{\partial t}##=
(beacause stokes theorem)
##\oint(dS*(rot(\vec{v}\times \vec{B})-\frac{\partial \vec{B}}{\partial t}))=
\oint(dS*(\vec{v}(\nabla \cdot \vec{B}) - \vec{B}(\nabla \cdot \vec{v}) + (\vec{B}\cdot \nabla)\vec{v} - (\vec{v}\cdot \nabla)\vec{B}-\frac{\partial \vec{B}}{\partial t}))=##(because according to Maxwells II equation ##div(B)=0##)
##\oint(dS*(\vec{B}(\nabla \cdot \vec{v}) + (\vec{B}\cdot \nabla)\vec{v} - (\vec{v}\cdot \nabla)\vec{B}-\frac{\partial \vec{B}}{\partial t}))=##
(because the idea based on a rigid body moving lineary with constant speed ##\forall_i(\frac{\partial v}{\partial x_i}=0)##)
##\oint(dS*(-(\vec{v}\cdot \nabla)\vec{B}-\frac{\partial \vec{B}}{\partial t}))##
(beacuse we assume that all EM field is created by the magnet and magnetic field is soly determined by position of magnet, ##B(t)=f(\vec{X_{magnet}}(t))## time ##\Delta t## ago was ##B(t-\Delta t)=f(\vec{X_{magnet}}(t-\Delta t))=f(\vec{X_{magnet}}(t)-\Delta t*v)##, it must be that ##(\vec{v}\cdot \nabla)\vec{B}=\frac{\partial \vec{B}}{\partial t}##)
##-2*\oint(dS*(\vec{v}\cdot \nabla)\vec{B})##
It should be 0 in both frames of reference, but I probably made a sign error somewhere.