Hi Folks,(adsbygoogle = window.adsbygoogle || []).push({});

I worked out a couple of problems on finding the Cauchy Principal Value, and I would like to check whether my solutions are correct and also take the opportunity to ask a couple of general questions about the residue theorem, contour integration, and the Cauchy principal value.The post looks long, but there are just a few, small questions. I did most of the work.Please help! Many thanks.

1. The problem statement, all variables and given/known data

Part (a) Integrate:

[tex]{\mathcal P.V.} \int_{-\infty} ^{\infty} \frac{ \exp( -2\pi\, i\, \xi \, x ) }{4\pi ^2 \xi ^2 - k^2} \, d\xi [/tex]

Part (b) Integrate:

[tex]{\mathcal P.V.} \int_{-\pi} ^{\pi} \frac{e^{in\theta} }{\cos \theta} \, d\theta [/tex]

2. Relevant equations

N/A

3. The attempt at a solution

Part (a) Integrate:

[tex]{\mathcal P.V.} \int_{-\infty} ^{\infty} \frac{ \exp( -2\pi\, i\, \xi \, x ) }{4\pi ^2 \xi ^2 - k^2} \, d\xi [/tex]

Choosing a semicircle contour of radius R and taking the limit as R goes to infinity, and also letting

[tex]\xi = R\, e^{i\theta}[/tex]

gives:

[tex] {\mathcal P.V.} \int_{-\infty} ^{\infty} \frac{ \exp( -2\pi\, i\, \xi \, x ) }{4\pi ^2 \left( \xi - \frac{k}{2\pi} \right) \left( \xi + \frac{k}{2\pi} \right) } \, d\xi = \left( \pi i \mbox{ }\sum _j \mbox{ Res}_j \right) + \lim _{R \to \infty} \int _0 ^\pi \left( d\theta i\, R \, e^{i\theta} \right) \frac{\displaystyle e^{-i\, 2\pi \, x \, R \, \cos \theta} e^{2\pi \, x \, R \, \sin \theta} }{\displaystyle 4\pi ^2 \left( R^2 e^{i\, 2\, \theta} - \frac{k^2}{4\pi^2} \right)}[/tex]

[tex] = \pi i \left[ \frac{\displaystyle \left( \frac{1}{4\pi^2} \right) \, e^{-ikx} }{\displaystyle \frac{k}{\pi}} + \frac{\displaystyle \left( \frac{1}{4\pi^2} \right) \, e^{ikx} }{\displaystyle \left( -\frac{k}{\pi} \right) } \right] + 0 = \frac{1}{2k} \sin (kx) [/tex]

As there is always a decaying exponential associated with R, regardless of whether x > 0 or x < 0; and 1/R behaviour is observed for x = 0.

3a. My Questions

- Is the above correct?

- Why do we multiply the residues by (pi * i) instead of (2*pi * i) as prescribed by the residue theorem? It seems to be the correct approach to do when the integration is along the real line, but I don't understand why.

Part (b) Integrate:

[tex]{\mathcal P.V.} \int_{-\pi} ^{\pi} \frac{e^{in\theta} }{\cos \theta} \, d\theta [/tex]

[tex]= {\mathcal P.V.} \int_{-\pi} ^{\pi} \frac{ \left( e^{i\theta} \right) ^n }{ \displaystyle \frac{1}{2} \left( e^{i\theta} + \frac{1}{e^{i\theta}} \right) } \, d\theta = {\mathcal P.V.} \mbox{ }\frac{2}{i} \, \int_{-\pi} ^{\pi} \frac{ z ^n }{ \displaystyle \frac{1}{2} \left( z + \frac{1}{z } \right)} \frac{dz}{iz} = {\mathcal P.V.} \mbox{ }\frac{2}{i} \, \int_{-\pi} ^{\pi} \frac{ z ^n }{z^2 + 1} \, dz [/tex]

[tex]= \frac{2}{i} \, \left( \pi i \mbox{ }\sum _j \mbox{ Res}_j \right) + \frac{2}{i} \, \lim _{R \to \infty} \int _0 ^{\pi} \frac{ \left( R \, e^{i\theta} \right) ^n }{ \left( R \, e^{i\theta} \right) ^2 + 1 } \, \left( i\, R \, e^{i\theta} \, d\theta \right) [/tex]

[tex] = \frac{2}{i} \, \left\{ \pi i \left[ \frac{i^n}{2i} + \frac{(-i)^n}{(-2i)} \right] \right\} + \frac{2}{i} \, \lim _{R \to \infty} \int _0 ^{\pi} \frac{ \left( R \, e^{i\theta} \right) ^n }{ \left( R \, e^{i\theta} \right) ^2 + 1 } \, \left( i\, R \, e^{i\theta} \, d\theta \right) [/tex]

[tex] = \frac{\pi}{i} \left[ i^n - (-i)^n \right] + 0 [/tex]

3b. My Questions and comments

- Mathematica can integrate the one above; it matches my answer upon evaluation as a function of n, but it is cast in a slightly different way:

- How can I claim the second integral indeed goes to 0? Here is my best shot:Code (Text):2 \[Pi] Sin[(n \[Pi])/2] + (HarmonicNumber[1/4 (-3 + n)] - HarmonicNumber[1/4 (-1 + n)]) Sin[n \[Pi]]

[tex] \lim _{R \to \infty} \frac{ \left( R \, e^{i\theta} \right) ^n }{ \left( R \, e^{i\theta} \right) ^2 + 1 } \, \left( i\, R \, e^{i\theta} \right) = \lim _{R \to \infty} \frac{ \left( R \, e^{i\theta} \right) ^n }{ \left( R \, e^{i\theta} \right) ^2 + 1 } \, \left( i\, R \, e^{i\theta} \right) = i \, \lim _{R \to \infty} \frac{R^{n+1} \, e^{i\theta} }{R^2 \, e^{i\, 2\theta} + 1} = i \, \lim _{R \to \infty} \frac{1}{\displaystyle \frac{R^2 \, e^{i\, 2\theta}}{R^{n+1} \, e^{i\theta}} + \frac{1}{R^{n+1} \, e^{i\theta}}} = i \, \lim _{R \to \infty} \frac{1}{\displaystyle \frac{A}{B} + C } [/tex]

I take 3 cases for the above, namely:

i) (n+1) < 2, where I get

[tex] C = 0[/tex]

[tex] (A/B) \to \infty [/tex]

making the fraction go to zero

ii) (n+1) > 2, where I get

[tex] C = 0[/tex]

[tex] (A/B) \to 0 [/tex]

making the fraction go to 1/0 = undefined

iii) (n+1) = 2, where I get

[tex] C = 0[/tex]

[tex] A/B = e^{i(2-n)\theta}[/tex]

making the integrand go to

[tex] ie^{i(n-2)\theta} [/tex]

So, it appears that only for (n+1) < 2 the integral can be done. I might have something wrong; can someone help?

THANKS!!

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Residue Theorem, Contour Integration, and the Cauchy Principal Value

**Physics Forums | Science Articles, Homework Help, Discussion**